Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Ji Yu, Lian Chang-Wang, Yan Rui, Ren Chuang, Yang Dong, Wan Zhen-Hua, Zhao Bin, Wang Chen, Fang Zhi-Heng, Zheng Jian. Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime[J]. Matter and Radiation at Extremes, 2021, 6(1): 015901. doi: 10.1063/5.0026379
Citation: Ji Yu, Lian Chang-Wang, Yan Rui, Ren Chuang, Yang Dong, Wan Zhen-Hua, Zhao Bin, Wang Chen, Fang Zhi-Heng, Zheng Jian. Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime[J]. Matter and Radiation at Extremes, 2021, 6(1): 015901. doi: 10.1063/5.0026379

Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime

doi: 10.1063/5.0026379
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: ruiyan@ustc.edu.cn
  • Received Date: 2020-08-25
  • Accepted Date: 2020-11-24
  • Available Online: 2021-01-01
  • Publish Date: 2021-01-15
  • We present particle-in-cell (PIC) simulations of laser plasma instabilities (LPIs) with a laser pulse duration of a few picoseconds. The simulation parameters are appropriate to the planar-target LPI experimental conditions on SG-II. In this regime, the plasmas are characterized by a long electron density scale length and a large electron density range. It is found that when the incident laser intensity is well above its backward stimulated Raman scattering (backward SRS, BSRS) threshold, the backscattered light via the primary BSRS is intense enough to excite secondary SRS (Re-SRS) in the region below one-ninth of the critical density of the incident laser. The daughter light wave via the secondary BSRS (Re-BSRS) is amplified as it propagates toward the higher-density region in the bath of broadband light generated through the primary BSRS process. A higher intensity of the incident laser not only increases the amplitude of the BSRS light but also increases the convective amplification lengths of the Re-BSRS modes by broadening the spectrum of the BSRS light. Convective amplification of Re-BSRS causes pump depletion of the primary BSRS light and may lead to an underestimate of the primary BSRS level in SP-LPI experiments. A significant fraction of the generation of energetic electrons is strongly correlated with the Re-BSRS modes and should be considered as a significant energy loss.
  • loading
  • [1]
    J. D. Lindl, Inertial Confinement Fusion (Springer, New York, 1998).
    [2]
    C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Controlled Fusion 47, B389–B403 (2005).10.1088/0741-3335/47/12b/s28
    [3]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, R. Zhang, F. Wang, H. Jia, and X. Deng, “Laser performance upgrade for precise ICF experiment in SG-III laser facility,” Matter Radiat. Extremes 2, 243–255 (2017).10.1016/j.mre.2017.07.004
    [4]
    J. Zhu, J. Zhu, X. Li, B. Zhu, W. Ma, X. Lu, W. Fan, Z. Liu, S. Zhou, G. Xu, G. Zhang, X. Xie, L. Yang, J. Wang, X. Ouyang, L. Wang, D. Li, P. Yang, Q. Fan, M. Sun, C. Liu, D. Liu, Y. Zhang, H. Tao, M. Sun, P. Zhu, B. Wang, Z. Jiao, L. Ren, D. Liu, X. Jiao, H. Huang, and Z. Lin, “Status and development of high-power laser facilities at the NLHPLP,” High Power Laser Sci. Eng. 6, e55 (2018).10.1017/hpl.2018.46
    [5]
    M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel, M. Hohenberger, R. W. Short, R. Epstein, S. P. Regan, E. M. Campbell, T. Chapman, C. Goyon, J. E. Ralph, M. A. Barrios, J. D. Moody, and J. W. Bates, “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/physrevlett.120.055001
    [6]
    H. Wen, R. Yan, A. V. Maximov, and C. Ren, “Linear regime of two-plasmon decay and stimulated Raman scattering instability near the quarter-critical density in plasmas,” Phys. Plasmas 22, 052704 (2015).10.1063/1.4919959
    [7]
    M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
    [8]
    H. A. Baldis, D. M. Villeneuve, B. La Fontaine, G. D. Enright, C. Labaune, S. Baton, P. Mounaix, D. Pesme, M. Casanova, and W. Rozmus, “Stimulated Brillouin scattering in picosecond time scales: Experiments and modeling,” Phys. Fluids B 5, 3319–3327 (1993).10.1063/1.860628
    [9]
    S. D. Baton, C. Rousseaux, P. Mounaix, C. Labaune, B. La Fontaine, D. Pesme, N. Renard, S. Gary, M. Louis-Jacquet, and H. A. Baldis, “Stimulated Brillouin scattering with a 1 ps laser pulse in a preformed underdense plasma,” Phys. Rev. E 49, R3602–R3605 (1994).10.1103/physreve.49.r3602
    [10]
    C. Rousseaux, G. Malka, J. L. Miquel, F. Amiranoff, S. D. Baton, and P. Mounaix, “Experimental validation of the linear theory of stimulated Raman scattering driven by a 500-fs laser pulse in a preformed underdense plasma,” Phys. Rev. Lett. 74, 4655–4658 (1995).10.1103/physrevlett.74.4655
    [11]
    C. Rousseaux, M. Rabec le Gloahec, S. D. Baton, F. Amiranoff, J. Fuchs, L. Gremillet, J. C. Adam, A. Héron, and P. Mora, “Strong absorption, intense forward-Raman scattering and relativistic electrons driven by a short, high intensity laser pulse through moderately underdense plasmas,” Phys. Plasmas 9, 4261–4269 (2002).10.1063/1.1504715
    [12]
    C. Rousseaux, L. Gremillet, M. Casanova, P. Loiseau, M. Rabec Le Gloahec, S. D. Baton, F. Amiranoff, J. C. Adam, and A. Héron, “Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic,” Phys. Rev. Lett. 97, 015001 (2006).10.1103/physrevlett.97.015001
    [13]
    C. Rousseaux, S. D. Baton, D. Bénisti, L. Gremillet, J. C. Adam, A. Héron, D. J. Strozzi, and F. Amiranoff, “Experimental evidence of predominantly transverse electron plasma waves driven by stimulated Raman scattering of picosecond laser pulses,” Phys. Rev. Lett. 102, 185003 (2009).10.1103/physrevlett.102.185003
    [14]
    L. Yin, B. J. Albright, K. J. Bowers, W. Daughton, and H. A. Rose, “Saturation of backward stimulated scattering of a laser beam in the kinetic regime,” Phys. Rev. Lett. 99, 265004 (2007).10.1103/physrevlett.99.265004
    [15]
    C. Rousseaux, S. D. Baton, D. Bénisti, L. Gremillet, B. Loupias, F. Philippe, V. Tassin, F. Amiranoff, J. L. Kline, D. S. Montgomery, and B. B. Afeyan, “Experimental investigation of stimulated Raman and Brillouin scattering instabilities driven by two successive collinear picosecond laser pulses,” Phys. Rev. E 93, 043209 (2016).10.1103/PhysRevE.93.043209
    [16]
    R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
    [17]
    L. J. Perkins, R. Betti, K. N. LaFortune, and W. H. Williams, “Shock ignition: A new approach to high gain inertial confinement fusion on the National Ignition Facility,” Phys. Rev. Lett. 103, 045004 (2009).10.1103/physrevlett.103.045004
    [18]
    X. T. He, J. W. Li, Z. F. Fan, L. F. Wang, J. Liu, K. Lan, J. F. Wu, and W. H. Ye, “A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion,” Phys. Plasmas 23, 082706 (2016).10.1063/1.4960973
    [19]
    A. B. Langdon and D. E. Hinkel, “Nonlinear evolution of stimulated scatter in high-temperature plasmas,” Phys. Rev. Lett. 89, 015003 (2002).10.1103/physrevlett.89.015003
    [20]
    B. J. Winjum, J. E. Fahlen, F. S. Tsung, and W. B. Mori, “Anomalously hot electrons due to rescatter of stimulated Raman scattering in the kinetic regime,” Phys. Rev. Lett. 110, 165001 (2013); arXiv:1210.1196.10.1103/physrevlett.110.165001
    [21]
    O. Klimo, S. Weber, V. T. Tikhonchuk, and J. Limpouch, “Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario,” Plasma Phys. Controlled Fusion 52, 055013 (2010).10.1088/0741-3335/52/5/055013
    [22]
    L. Hao, R. Yan, J. Li, W. D. Liu, and C. Ren, “Nonlinear fluid simulation study of stimulated Raman and Brillouin scatterings in shock ignition,” Phys. Plasmas 24, 062709 (2017).10.1063/1.4989702
    [23]
    Y. Zhao, Z. Sheng, S. Weng, S. Ji, and J. Zhu, “Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma,” High Power Laser Sci. Eng. 7, e20 (2019).10.1017/hpl.2019.5
    [24]
    W. L. Kruer, The Physics of Laser Plasma Interactions (Westview Press, Boulder, Colorado, 2003).
    [25]
    R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342 (2002).10.1007/3-540-47789-6_36
    [26]
    C. S. Liu, M. N. Rosenbluth, and R. B. White, “Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas,” Phys. Fluids 17, 1211 (1974).10.1063/1.1694867
    [27]
    D. S. Montgomery, J. A. Cobble, J. C. Fernández, R. J. Focia, R. P. Johnson, N. Renard-Legalloudec, H. A. Rose, and D. A. Russell, “Recent trident single hot spot experiments: Evidence for kinetic effects, and observation of Langmuir decay instability cascade,” Phys. Plasmas 9, 2311–2320 (2002).10.1063/1.1468857
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (195) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return