Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Roycroft R., Bradley P. A., McCary E., Bowers B., Smith H., Dyer G. M., Albright B. J., Blouin S., Hakel P., Quevedo H. J., Vold E. L., Yin L., Hegelich B. M.. Experiments and simulations of isochorically heated warm dense carbon foam at the Texas Petawatt Laser[J]. Matter and Radiation at Extremes, 2021, 6(1): 014403. doi: 10.1063/5.0026595
Citation: Roycroft R., Bradley P. A., McCary E., Bowers B., Smith H., Dyer G. M., Albright B. J., Blouin S., Hakel P., Quevedo H. J., Vold E. L., Yin L., Hegelich B. M.. Experiments and simulations of isochorically heated warm dense carbon foam at the Texas Petawatt Laser[J]. Matter and Radiation at Extremes, 2021, 6(1): 014403. doi: 10.1063/5.0026595

Experiments and simulations of isochorically heated warm dense carbon foam at the Texas Petawatt Laser

doi: 10.1063/5.0026595
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: rroycroft@lanl.gov
  • Received Date: 2020-08-24
  • Accepted Date: 2020-11-02
  • Available Online: 2021-01-01
  • Publish Date: 2021-01-15
  • An experimental and simulation study of warm dense carbon foams at ambient density (ne ∼ 1021 cm−3) is presented. This study of isochorically heated foams is motivated by their potential application in carbon-atmosphere white-dwarf envelopes, where there are modeling uncertainties due to the equation of state. The foams are heated on an approximately picosecond time scale with a laser-accelerated proton beam. The cooling and expansion of the heated foams can be modeled with appropriately initialized radiation-hydrodynamics codes; xRAGE code is used in this work. The primary experimental diagnostic is the streaked optical pyrometer, which images a narrow band of radiation from the rear surface of the heated material. Presented are xRAGE modeling results for both solid aluminum targets and carbonized resorcinol-formaldehyde foam targets, showing that the foam appears to cool slowly on the pyrometer because of partial transparency. So that simulations of cooling foam are processed properly, it is necessary to account for finite optical depth in the photosphere calculation, and the methods for performing that calculation are presented in depth.
  • loading
  • [1]
    C. Pelletier, G. Fontaine, F. Wesemael, G. Michaud, and G. Wegner, “Carbon pollution in helium-rich white dwarf atmospheres: Time-dependent calculations of the dredge-up process,” Astrophys. J. 307, 242 (1986).10.1086/164410
    [2]
    A. H. Córsico, A. D. Romero, L. G. Althaus, and E. García-Berro, “Hot C-rich white dwarfs: Testing the DB-DQ transition through pulsations,” Astron. Astrophys. 506, 835–843 (2009).10.1051/0004-6361/200912481
    [3]
    D. Koester and S. O. Kepler, “Carbon-rich (DQ) white dwarfs in the sloan digital sky survey,” Astron. Astrophys. 628, A102 (2019).10.1051/0004-6361/201935946
    [4]
    R. E. Falcon, G. A. Rochau, J. E. Bailey, T. A. Gomez, M. H. Montgomery, D. E. Winget, and T. Nagayama, “Laboratory measurements of white dwarf photospheric spectral lines: Hβ,” Astrophys. J. 806, 214 (2015).10.1088/0004-637x/806/2/214
    [5]
    A. L. Kritcher, D. C. Swift, T. Döppner, B. Bachmann, L. X. Benedict, G. W. Collins, J. L. DuBois, F. Elsner, G. Fontaine, J. A. Gaffney et al., “A measurement of the equation of state of carbon envelopes of white dwarfs,” Nature 584, 51 (2020).10.1038/s41586-020-2535-y
    [6]
    P. K. Patel, A. J. Mackinnon, M. H. Key, T. E. Cowan, M. E. Foord, M. Allen, D. F. Price, H. Ruhl, P. T. Springer, and R. Stephens, “Isochoric heating of solid-density matter with an ultrafast proton beam,” Phys. Rev. Lett. 91, 125004 (2003).10.1103/physrevlett.91.125004
    [7]
    W. Bang, B. J. Albright, P. A. Bradley, E. L. Vold, J. C. Boettger, and J. C. Fernandez, “Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams,” Phys. Rev. E 92, 063101 (2015).10.1103/physreve.92.063101
    [8]
    J. C. Fernández, D. Cort Gautier, C. Huang, S. Palaniyappan, B. J. Albright, W. Bang, G. Dyer, A. Favalli, J. F. Hunter, J. Mendez et al., “Laser-plasmas in the relativistic-transparency regime: Science and applications,” Phys. Plasmas 24, 056702 (2017).10.1063/1.4983991
    [9]
    K. Eidmann, U. Andiel, F. Pisani, P. Hakel, R. C. Mancini, J. Abdallah, G. C. Junkel-Vives, and K. Witte, “X-ray spectroscopy of dense plasmas produced by isochoric heating with ultrashort laser pulses,” AIP Conf. Proc. 730, 81 (2004).10.1063/1.1824859
    [10]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
    [11]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).10.1063/1.1333697
    [12]
    M. Hegelich, S. Sarsch, G. Pretzler, D. Habs, K. Witte, W. Guenther, M. Allen, A. Blazevic, J. Fuchs, J. C. Gauthier, M. Geissel, P. Audebert, T. Cowan, and M. Roth, “MeV ion jets from short-pulse-laser interaction with thin foils,” Phys. Rev. Lett. 89, 085002 (2002).10.1103/physrevlett.89.085002
    [13]
    R. Roycroft, B. Bowers, H. Smith, E. McCary, F. Aymond, G. M. Dyer, H. J. Quevedo, P. A. Bradley, E. L. Vold, L. Yin, and B. M. Hegelich, “Streaked optical pyrometer for proton-driven isochoric heating experiments for solid and foam targets,” AIP Adv. 10, 045220 (2020).10.1063/1.5121538
    [14]
    S. Feldman, G. Dyer, D. Kuk, and T. Ditmire, “Measurement of the equation of state of solid-density copper heated with laser-accelerated protons,” Phys. Rev. E 95, 031201(R) (2017).10.1103/physreve.95.031201
    [15]
    A. McKelvey, G. E. Kemp, P. A. Sterne, A. Fernandez-Panella, R. Shepherd, M. Marinak, A. Link, G. W. Collins, H. Sio, J. King, R. R. Freeman, R. Hua, C. McGuffey, J. Kim, F. N. Beg, and Y. Ping, “Thermal conductivity measurements of proton-heated warm dense aluminum,” Sci. Rep. 7, 7015 (2017).10.1038/s41598-017-07173-0
    [16]
    P. Celliers and A. Ng, “Optical probing of hot expanded states produced by shock release,” Phys. Rev. E 47, 3547 (1993).10.1103/physreve.47.3547
    [17]
    E. W. Gaul, M. Martinez, J. Blakeney, A. Jochmann, M. Ringuette, D. Hammond, T. Borger, R. Escamilla, S. Douglas, W. Henderson, G. Dyer, A. Erlandson, R. Cross, J. Caird, C. Ebbers, and T. Ditmire, “Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier,” Appl. Opt. 49, 1676–1681 (2010).10.1364/ao.49.001676
    [18]
    E. Gaul, T. Toncian, M. Martinez, J. Gordon, M. Spinks, G. Dyer, N. Truong, C. Wagner, G. Tiwari, M. E. Donovan, T. Ditmire, and B. M. Hegelich, “Improved pulse contrast on the Texas petawatt laser,” J. Phys.: Conf. Ser. 717, 012092 (2016).10.1088/1742-6596/717/1/012092
    [19]
    F. M. Kong, S. R. Buckley, C. L. Giles, B. L. Haendler, L. M. Hair, S. A. Letts, G. E. Overturf, C. W. Price, and R. C. Cook, “Low-density carbonized resorcinol-formaldehyde foams,” UCRL-LR-106946, 1991.
    [20]
    G. M. Dyer, A. C. Bernstein, B. I. Cho, J. Osterholz, W. Grigsby, A. Dalton, R. Shepherd, Y. Ping, H. Chen, K. Widmann, and T. Ditmire, “Equation-of-state measurement of dense plasmas heated with fast protons,” Phys. Rev. Lett. 101, 015002 (2008).10.1103/physrevlett.101.015002
    [21]
    S. D. Crockett, “Analysis of SESAME 3720: A new aluminium equation of state,” LA-UR-04-6442, 2004.
    [22]
    J. J. Thomson, “Rays of positive electricity,” Philos. Mag. Ser. 22, 469 (1911).10.1080/14786440208637024
    [23]
    D. Jung, R. Hörlein, D. Kiefer, S. Letzring, D. C. Gautier, U. Schramm, C. Hübsch, R. Öhm, B. J. Albright, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Development of a high resolution and high dispersion Thomson parabola,” Rev. Sci. Instrum. 82, 013306 (2011).10.1063/1.3523428
    [24]
    A. Ng, D. Parfeniuk, and L. DaSilva, “Measurement of shock heating in laser-irradiated solids,” Opt. Commun. 53, 389 (1985).10.1016/0030-4018(85)90024-0
    [25]
    J. A. Oertel, T. J. Murphy, R. R. Berggren, J. Faulkner, R. Schmell, D. Little, T. Archuleta, J. Lopez, J. Velarde, and R. F. Horton, “Multipurpose 10 in. manipulator-based optical telescope for Omega and the Trident laser facilities,” Rev. Sci. Instrum. 70, 803 (1999).10.1063/1.1149403
    [26]
    J. E. Miller, T. R. Boehly, A. Melchior, D. D. Meyerhofer, P. M. Celliers, J. H. Eggert, D. G. Hicks, C. M. Sorce, J. A. Oertel, and P. M. Emmel, “Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA,” Rev. Sci. Instrum. 78, 034903 (2007).10.1063/1.2712189
    [27]
    M. C. Gregor, R. Boni, A. Sorce, J. Kendrick, C. A. McCoy, D. N. Polsin, T. R. Boehly, P. M. Celliers, G. W. Collins, D. E. Fratanduono, J. H. Eggert, and M. Millot, “Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurement of compressed materials,” Rev. Sci. Instrum. 87, 114903 (2016).10.1063/1.4968023
    [28]
    E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87, 11E546 (2016).10.1063/1.4962036
    [29]
    M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker, E. Dendy, R. Hueckstaedt, K. New, W. R. Oakes et al., “The RAGE radiation-hydrodynamic code,” Comput. Sci. Discovery 1, 015005 (2008).10.1088/1749-4699/1/1/015005
    [30]
    L. S. Brown, D. L. Preston, and R. L. Singleton, Jr., “Charged particle motion in a highly ionized plasma,” Phys. Rep. 410, 237–333 (2005).10.1016/j.physrep.2005.01.001
    [31]
    T. G. White, N. J. Hartley, B. Borm, B. J. B. Crowley, J. W. O. Harris, D. C. Hochhaus, T. Kaempfer, K. Li, P. Neumayer, L. K. Pattison et al., “Electron-ion equilibration in ultrafast heated graphite,” Phys. Rev. Lett. 112, 145005 (2014).10.1103/physrevlett.112.145005
    [32]
    J. F. Ziegler, “The stopping and rage of ions in matter,” http://www.srim.org; accessed on January 2020.
    [33]
    J. Kim, C. McGuffey, D. C. Gautier, A. Link, G. E. Kemp, E. M. Giraldez, M. S. Wei, R. B. Stephens, S. Kerr, P. L. Poole et al., “Anomalous material-dependent transport of focused, laser-driven proton beams,” Sci. Rep. 8, 17538 (2018).10.1038/s41598-018-36106-8
    [34]
    F. Nürnberg, M. Schollmeier, E. Brambrink, A. Blažević, D. C. Carroll, K. Flippo, D. C. Gautier, M. Geißel, K. Harres, B. M. Hegelich et al., “Radiochromic film imaging spectroscopy of laser-accelerated proton beams,” Rev. Sci. Instrum. 80, 033301 (2009).10.1063/1.3086424
    [35]
    M. Roth and M. Schollmeier, “Ion acceleration—Target normal sheath acceleration,” in Laser-Plasma Interactions and Applications, Scottish Graduate Series, edited by P. McKenna et al. (Springer International Publishing, 2013), pp. 303–350.
    [36]
    J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48 (2005).10.1038/nphys199
    [37]
    J. Johnson and S. Lyon, SESAME 7834, in Los Alamos National Laboratory Report No. LA-UR-92-3407, 1992.
    [38]
    G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics (Wiley VCH, 2004).
    [39]
    C. J. Fontes, H. L. Zhang, J. Abdallah, Jr., R. E. H. Clark, D. P. Kilcrease, J. Colgan, R. T. Cunningham, P. Hakel, N. H. Magee, and M. E. Sherrill, “The Los Alamos suite of relativistic atomic physics codes,” J. Phys. B: At., Mol. Opt. Phys. 48, 144014 (2015).10.1088/0953-4075/48/14/144014
    [40]
    J. Colgan, D. P. Kilcrease, N. H. Magee, M. E. Sherrill, J. Abdallah, Jr., P. Hakel, C. J. Fontes, J. A. Guzik, and K. A. Mussack, “A new generation of Los Alamos opacity tables,” Astrophys. J. 817, 116 (2016).10.3847/0004-637x/817/2/116
    [41]
    P. Dufour, G. Fontaine, J. Liebert, G. D. Schmidt, and N. Behara, “Hot DQ white dwarfs: Something different,” Astrophys. J. 683, 978 (2008).10.1086/589855
    [42]
    S. Coutu, P. Dufour, P. Bergeron, S. Blouin, E. Loranger, N. F. Allard, and B. H. Dunlap, “Analysis of helium-rich white dwarfs polluted by heavy elements in the Gaia era,” Astrophys. J. 885, 74 (2019).10.3847/1538-4357/ab46b9
    [43]
    P. Bergeron, D. Saumon, and F. Wesemael, “New model atmospheres for very cool white dwarfs with mixed H/He and pure He compositions,” Astrophys. J. 443, 764–779 (1995).10.1086/175566
    [44]
    R. A. Snavely, B. Zhang, K. Akli, Z. Chen, R. R. Freeman, P. Gu, S. P. Hatchett, D. Hey, J. Hill, M. H. Key et al., “Laser generated proton beam focusing and high temperature isochoric heating of solid matter,” Phys. Plasmas 14, 092703 (2007).10.1063/1.2774001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (174) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return