Citation: | Ji Yu, Lian Chang-Wang, Yan Rui, Ren Chuang, Yang Dong, Wan Zhen-Hua, Zhao Bin, Wang Chen, Fang Zhi-Heng, Zheng Jian. Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime[J]. Matter and Radiation at Extremes, 2021, 6(1): 015901. doi: 10.1063/5.0026379 |
[1] |
J. D. Lindl, Inertial Confinement Fusion (Springer, New York, 1998).
|
[2] |
C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Controlled Fusion 47, B389–B403 (2005).10.1088/0741-3335/47/12b/s28
|
[3] |
W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, R. Zhang, F. Wang, H. Jia, and X. Deng, “Laser performance upgrade for precise ICF experiment in SG-III laser facility,” Matter Radiat. Extremes 2, 243–255 (2017).10.1016/j.mre.2017.07.004
|
[4] |
J. Zhu, J. Zhu, X. Li, B. Zhu, W. Ma, X. Lu, W. Fan, Z. Liu, S. Zhou, G. Xu, G. Zhang, X. Xie, L. Yang, J. Wang, X. Ouyang, L. Wang, D. Li, P. Yang, Q. Fan, M. Sun, C. Liu, D. Liu, Y. Zhang, H. Tao, M. Sun, P. Zhu, B. Wang, Z. Jiao, L. Ren, D. Liu, X. Jiao, H. Huang, and Z. Lin, “Status and development of high-power laser facilities at the NLHPLP,” High Power Laser Sci. Eng. 6, e55 (2018).10.1017/hpl.2018.46
|
[5] |
M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel, M. Hohenberger, R. W. Short, R. Epstein, S. P. Regan, E. M. Campbell, T. Chapman, C. Goyon, J. E. Ralph, M. A. Barrios, J. D. Moody, and J. W. Bates, “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/physrevlett.120.055001
|
[6] |
H. Wen, R. Yan, A. V. Maximov, and C. Ren, “Linear regime of two-plasmon decay and stimulated Raman scattering instability near the quarter-critical density in plasmas,” Phys. Plasmas 22, 052704 (2015).10.1063/1.4919959
|
[7] |
M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
|
[8] |
H. A. Baldis, D. M. Villeneuve, B. La Fontaine, G. D. Enright, C. Labaune, S. Baton, P. Mounaix, D. Pesme, M. Casanova, and W. Rozmus, “Stimulated Brillouin scattering in picosecond time scales: Experiments and modeling,” Phys. Fluids B 5, 3319–3327 (1993).10.1063/1.860628
|
[9] |
S. D. Baton, C. Rousseaux, P. Mounaix, C. Labaune, B. La Fontaine, D. Pesme, N. Renard, S. Gary, M. Louis-Jacquet, and H. A. Baldis, “Stimulated Brillouin scattering with a 1 ps laser pulse in a preformed underdense plasma,” Phys. Rev. E 49, R3602–R3605 (1994).10.1103/physreve.49.r3602
|
[10] |
C. Rousseaux, G. Malka, J. L. Miquel, F. Amiranoff, S. D. Baton, and P. Mounaix, “Experimental validation of the linear theory of stimulated Raman scattering driven by a 500-fs laser pulse in a preformed underdense plasma,” Phys. Rev. Lett. 74, 4655–4658 (1995).10.1103/physrevlett.74.4655
|
[11] |
C. Rousseaux, M. Rabec le Gloahec, S. D. Baton, F. Amiranoff, J. Fuchs, L. Gremillet, J. C. Adam, A. Héron, and P. Mora, “Strong absorption, intense forward-Raman scattering and relativistic electrons driven by a short, high intensity laser pulse through moderately underdense plasmas,” Phys. Plasmas 9, 4261–4269 (2002).10.1063/1.1504715
|
[12] |
C. Rousseaux, L. Gremillet, M. Casanova, P. Loiseau, M. Rabec Le Gloahec, S. D. Baton, F. Amiranoff, J. C. Adam, and A. Héron, “Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic,” Phys. Rev. Lett. 97, 015001 (2006).10.1103/physrevlett.97.015001
|
[13] |
C. Rousseaux, S. D. Baton, D. Bénisti, L. Gremillet, J. C. Adam, A. Héron, D. J. Strozzi, and F. Amiranoff, “Experimental evidence of predominantly transverse electron plasma waves driven by stimulated Raman scattering of picosecond laser pulses,” Phys. Rev. Lett. 102, 185003 (2009).10.1103/physrevlett.102.185003
|
[14] |
L. Yin, B. J. Albright, K. J. Bowers, W. Daughton, and H. A. Rose, “Saturation of backward stimulated scattering of a laser beam in the kinetic regime,” Phys. Rev. Lett. 99, 265004 (2007).10.1103/physrevlett.99.265004
|
[15] |
C. Rousseaux, S. D. Baton, D. Bénisti, L. Gremillet, B. Loupias, F. Philippe, V. Tassin, F. Amiranoff, J. L. Kline, D. S. Montgomery, and B. B. Afeyan, “Experimental investigation of stimulated Raman and Brillouin scattering instabilities driven by two successive collinear picosecond laser pulses,” Phys. Rev. E 93, 043209 (2016).10.1103/PhysRevE.93.043209
|
[16] |
R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
|
[17] |
L. J. Perkins, R. Betti, K. N. LaFortune, and W. H. Williams, “Shock ignition: A new approach to high gain inertial confinement fusion on the National Ignition Facility,” Phys. Rev. Lett. 103, 045004 (2009).10.1103/physrevlett.103.045004
|
[18] |
X. T. He, J. W. Li, Z. F. Fan, L. F. Wang, J. Liu, K. Lan, J. F. Wu, and W. H. Ye, “A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion,” Phys. Plasmas 23, 082706 (2016).10.1063/1.4960973
|
[19] |
A. B. Langdon and D. E. Hinkel, “Nonlinear evolution of stimulated scatter in high-temperature plasmas,” Phys. Rev. Lett. 89, 015003 (2002).10.1103/physrevlett.89.015003
|
[20] |
B. J. Winjum, J. E. Fahlen, F. S. Tsung, and W. B. Mori, “Anomalously hot electrons due to rescatter of stimulated Raman scattering in the kinetic regime,” Phys. Rev. Lett. 110, 165001 (2013); arXiv:1210.1196.10.1103/physrevlett.110.165001
|
[21] |
O. Klimo, S. Weber, V. T. Tikhonchuk, and J. Limpouch, “Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario,” Plasma Phys. Controlled Fusion 52, 055013 (2010).10.1088/0741-3335/52/5/055013
|
[22] |
L. Hao, R. Yan, J. Li, W. D. Liu, and C. Ren, “Nonlinear fluid simulation study of stimulated Raman and Brillouin scatterings in shock ignition,” Phys. Plasmas 24, 062709 (2017).10.1063/1.4989702
|
[23] |
Y. Zhao, Z. Sheng, S. Weng, S. Ji, and J. Zhu, “Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma,” High Power Laser Sci. Eng. 7, e20 (2019).10.1017/hpl.2019.5
|
[24] |
W. L. Kruer, The Physics of Laser Plasma Interactions (Westview Press, Boulder, Colorado, 2003).
|
[25] |
R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342 (2002).10.1007/3-540-47789-6_36
|
[26] |
C. S. Liu, M. N. Rosenbluth, and R. B. White, “Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas,” Phys. Fluids 17, 1211 (1974).10.1063/1.1694867
|
[27] |
D. S. Montgomery, J. A. Cobble, J. C. Fernández, R. J. Focia, R. P. Johnson, N. Renard-Legalloudec, H. A. Rose, and D. A. Russell, “Recent trident single hot spot experiments: Evidence for kinetic effects, and observation of Langmuir decay instability cascade,” Phys. Plasmas 9, 2311–2320 (2002).10.1063/1.1468857
|