Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Zhang Zhen-Chi, Yang Tao, Hu Guang-Yue, Li Meng-Ting, Luo Wen, An Ning, Zheng Jian. Compact broadband high-resolution Compton spectroscopy for laser-driven high-flux gamma rays[J]. Matter and Radiation at Extremes, 2021, 6(1): 014401. doi: 10.1063/5.0026005
Citation: Zhang Zhen-Chi, Yang Tao, Hu Guang-Yue, Li Meng-Ting, Luo Wen, An Ning, Zheng Jian. Compact broadband high-resolution Compton spectroscopy for laser-driven high-flux gamma rays[J]. Matter and Radiation at Extremes, 2021, 6(1): 014401. doi: 10.1063/5.0026005

Compact broadband high-resolution Compton spectroscopy for laser-driven high-flux gamma rays

doi: 10.1063/5.0026005
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: gyhu@ustc.edu.cn
  • Received Date: 2020-08-22
  • Accepted Date: 2020-11-05
  • Available Online: 2021-01-01
  • Publish Date: 2021-01-15
  • A compact broadband Compton spectrometer with high spectral resolution has been designed to detect spectra of laser-driven high-flux gamma rays. The primary detection range of the gamma-ray spectrum is 0.5 MeV–13 MeV, although a secondary harder gamma-ray region of 13 MeV–30 MeV can also be covered. The Compton-scattered electrons are spectrally resolved using a curved surface detector and a nonuniform magnetic field produced by a pair of step-like magnets. This design allows a compact structure, a wider bandwidth, especially in the lower-energy region of 0.5 MeV–2 MeV, and optimum spectral resolution. The spectral resolution is 5%–10% in the range 4 MeV–13 MeV and better than 25% in the range 0.5 MeV–4 MeV (with an Al converter of 0.25 mm thickness and a collimator of 1 cm inner diameter). Low-Z plastic materials are used on the inner surface of the spectrometer to suppress noise due to secondary X-ray fluorescence. The spectrometer can be adjusted flexibly via a specially designed mechanical component. An algorithm based on a regularization method has also been developed to reconstruct the gamma-ray spectrum from the scattered electrons.
  • loading
  • [1]
    H.-S. Park, D. M. Chambers, H.-K. Chung et al., “High-energy Kα radiography using high-intensity, short-pulse lasers,” Phys. Plasmas 13, 056309 (2006).10.1063/1.2178775
    [2]
    J. C. Kieffer, A. Krol, Z. Jiang, C. C. Chamberlain, E. Scalzetti, and Z. Ichalalene, “Future of laser-based X-ray sources for medical imaging,” Appl. Phys. B 74, s75–s81 (2002).10.1007/s00340-002-0870-3
    [3]
    H. W. Herrmann, N. Hoffman, D. C. Wilson et al., “Diagnosing inertial confinement fusion gamma ray physics (invited),” Rev. Sci. Instrum. 81, 10D333 (2010).10.1063/1.3495770
    [4]
    N. M. Hoffman, H. W. Herrmann, Y. H. Kim et al., “Measurement of areal density in the ablators of inertial-confinement-fusion capsules via detection of ablator (n, n′γ) gamma-ray emission,” Phys. Plasmas 20, 042705 (2013).10.1063/1.4799799
    [5]
    R. Nolte, R. Behrens, M. Schnürer et al., “A TLD-based few-channel spectrometer for x ray fields with high fluence rates,” Radiat. Prot. Dosim. 84(1-4), 367–370 (1999).10.1093/oxfordjournals.rpd.a032758
    [6]
    R. Behrens and P. Ambrosi, “A TLD-based few-channel spectrometer for mixed photon, electron, and ion fields with high fluence rates,” Radiat. Prot. Dosim. 101(1-4), 73–76 (2002).10.1093/oxfordjournals.rpd.a006062
    [7]
    C. D. Chen, J. A. King, M. H. Key et al., “A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters,” Rev. Sci. Instrum. 79, 10E305 (2008).10.1063/1.2964231
    [8]
    R. Behrens, “A spectrometer for pulsed and continuous photon radiation,” J. Instrum. 4, P03027 (2009).10.1088/1748-0221/4/03/p03027
    [9]
    A. H. Compton, “A quantum theory of the scattering of x-rays by light elements,” Phys. Rev. 21, 483–502 (1923).10.1103/physrev.21.483
    [10]
    Y. Kim, H. W. Herrmann, T. J. Hilsabeck et al., “Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved gamma-ray diagnostic for the National Ignition Facility,” Rev. Sci. Instrum. 83, 10D311 (2012).10.1063/1.4738650
    [11]
    A. Henderson, E. Liang, N. Riley et al., “Ultra-intense gamma-rays created using the Texas Petawatt Laser,” High Energy Density Phys. 12, 46–56 (2014).10.1016/j.hedp.2014.06.004
    [12]
    D. J. Corvan, G. Sarri, and M. Zepf, “Design of a compact spectrometer for high-flux MeV gamma-ray beams,” Rev. Sci. Instrum. 85, 065119 (2014).10.1063/1.4884643
    [13]
    A. T. Nelms, “Graphs and the Compton energy-angle relationship and the Klein-Nishina formula from 10 keV to 500 MeV,” Phys. Today 7(5), 18 (1953).10.1063/1.3061625
    [14]
    R. D. Evans, The Atomic Nucleus (Krieger, Malabar, FL, 1955), pp. 673–712, ISBN: 0-89874-414-8.
    [15]
    C. M. Davisson, Interaction of γ-Radiation with Matter Alpha-, Beta- and Gamma-Ray Spectroscopy, edited by K. Siegbahn (North Holland, 1965), Chap. II, pp. 37–78.10.1016/C2009-0-07296-1
    [16]
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Pergamon Press, 1980), Vol. 4.
    [17]
    B. R. Maddox, H. S. Park, B. A. Remington et al., “High-energy x-ray backlighter spectrum measurements using calibrated image plates,” Rev. Sci. Instrum. 82, 023111 (2011).10.1063/1.3531979
    [18]
    K. A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Ikeda, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rev. Sci. Instrum. 76, 013507 (2005).10.1063/1.1824371
    [19]
    COMSOL Multiphysics® v.5.4. cn.comsol.com, COMSOL AB, Stockholm, Sweden.
    [20]
    T. Yang, G.-y. Hu, M.-t. Li et al., “Compact broadband Compton spectroscopy for intense laser-driven gamma-rays,” Rev. Sci. Instrum. (submitted).
    [21]
    S. Agostinelli, J. Allison, K. Amako et al., “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).
    [22]
    G. J. Williams, B. R. Maddox, H. Chen et al., “Calibration and equivalency analysis of image plate scanners,” Rev. Sci. Instrum. 85, 11E604 (2014).10.1063/1.4886390
    [23]
    A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method,” Sov. Math. Dokl. 4, 1035–1038 (1963); English translation of Dokl. Akad. Nauk. SSSR 151, 501–504 (1963).
    [24]
    J. N. Franklin, “Minimum principles for ill-posed problems,” SIAM J. Math. Anal. 9, 638–650 (1978).10.1137/0509044
    [25]
    K. Miller, “Least squares methods for ill-posed problems with a prescribed bound,” SIAM J. Math. Anal. 1, 52–74 (1970).10.1137/0501006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (229) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return