Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Gao Junwen, Hu Zhimin, Wu Yong, Wang Jianguo, Sisourat Nicolas, Dubois Alain. Projectile and target excitation in He+ + He collisions at intermediate energies[J]. Matter and Radiation at Extremes, 2021, 6(1): 014404. doi: 10.1063/5.0025623
Citation: Gao Junwen, Hu Zhimin, Wu Yong, Wang Jianguo, Sisourat Nicolas, Dubois Alain. Projectile and target excitation in He+ + He collisions at intermediate energies[J]. Matter and Radiation at Extremes, 2021, 6(1): 014404. doi: 10.1063/5.0025623

Projectile and target excitation in He+ + He collisions at intermediate energies

doi: 10.1063/5.0025623
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wu_yong@iapcm.ac.cn
  • Received Date: 2020-08-31
  • Accepted Date: 2020-11-09
  • Available Online: 2021-01-01
  • Publish Date: 2021-01-15
  • We present ab initio calculations of cross sections for projectile and target excitation occurring in the course of He+ + He collisions using a three-active-electron semiclassical nonperturbative approach. Intermediate impact energies ranging from 1 keV to 225 keV/u are considered. The results of our calculations agree well with available measurements for both projectile and target excitation in the respective overlapping energy regions. A comparison of our results with those of other theoretical calculations further demonstrates the importance of a nonperturbative approach that includes a sufficient number of channels. Furthermore, it is found that the cross sections for target excitation into singlet states show a valley centered at about 25 keV/u, resulting from competition with electron transfer to singlet projectile states. By contrast, the cross sections for target excitation into triplet states do not exhibit any such structures.
  • loading
  • [1]
    D. L. Guo, X. Ma, R. T. Zhang, S. F. Zhang, X. L. Zhu, W. T. Feng, Y. Gao, B. Hai, M. Zhang, H. B. Wang, and Z. K. Huang, “State-selective electron capture in 30- and 100-keV He++He collisions,” Phys. Rev. A 95, 012707 (2017).10.1103/physreva.95.012707
    [2]
    M. S. Schöffler, J. Titze, L. P. H. Schmidt, T. Jahnke, N. Neumann, O. Jagutzki, H. Schmidt-Böcking, R. Dörner, and I. Mančev, “State-selective differential cross sections for single and double electron capture in He+,2+-He and p-He collisions,” Phys. Rev. A 79, 064701 (2009).10.1103/physreva.79.064701
    [3]
    M. Baxter, T. Kirchner, and E. Engel, “Time-dependent spin-density-functional-theory description of He+-He collisions,” Phys. Rev. A 96, 032708 (2017).10.1103/physreva.96.032708
    [4]
    J. W. Gao, Y. Wu, J. G. Wang, N. Sisourat, and A. Dubois, “State-selective electron transfer in He+ + He collisions at intermediate energies,” Phys. Rev. A 97, 052709 (2018).10.1103/physreva.97.052709
    [5]
    I. Mančev, “Four-body continuum-distorted-wave model for charge exchange between hydrogenlike projectiles and atoms,” Phys. Rev. A 75, 052716 (2007).10.1103/physreva.75.052716
    [6]
    H. Atan, W. Steckelmacher, and M. W. Lucas, “Single electron loss and single electron capture for 0.6-2.2 MeV He+ colliding with rare gases,” J. Phys. B: At., Mol. Opt. Phys. 24, 2559–2569 (1999).10.1088/0953-4075/24/10/012
    [7]
    R. Hildenbrand, N. Grun, and W. Scheid, “Coupled channel calculations with Cartesian Gaussian basis functions for H + He and He+ + He reactions,” J. Phys. B: At., Mol. Opt. Phys. 28, 4781–4798 (1999).10.1088/0953-4075/28/22/010
    [8]
    J. L. Forest, J. A. Tanis, S. M. Ferguson, R. R. Haar, K. Lifrieri, and V. L. Plano, “Single and double ionization of helium by intermediate-to-high-velocity He+ projectiles,” Phys. Rev. A 52, 350–356 (1995).10.1103/physreva.52.350
    [9]
    R. Okasaka, K. Kawabe, S. Kawamoto, M. Tani, H. Kuma, T. Iwai, K. Mita, and A. Iwamae, “Excitation functions of He(n=3) levels in the intermediate-velocity regime of He+-He collisions,” Phys. Rev. A 49, 246–254 (1994).10.1103/physreva.49.246
    [10]
    R. D. DuBois and S. T. Manson, “Electron emission in He+-atom and He+-molecule collisions: A combined experimental and theoretical study,” Phys. Rev. A 42, 1222–1230 (1990).10.1103/physreva.42.1222
    [11]
    N. V. de Castro Faria, F. L. Freire, and A. G. de Pinho, “Electron loss and capture by fast helium ions in noble gases,” Phys. Rev. A 37, 280–283 (1988).10.1103/physreva.37.280
    [12]
    R. Hippler, K.-H. Schartner, and H. F. Beyer, “Direct and charge-exchange excitation of the 21P level in He+-He collisions,” J. Phys. B: At., Mol. Opt. Phys. 11, L337–L341 (1978).10.1088/0022-3700/11/11/001
    [13]
    R. Hegerberg, T. Stefansson, and M. T. Elford, “Measurement of the symmetric charge-exchange cross section in helium and argon in the impact energy range 1-10 keV,” J. Phys. B: At., Mol. Opt. Phys. 11, 133–147 (1978).10.1088/0022-3700/11/1/017
    [14]
    E. A. Hinds and R. Novick, “Precise resonant charge-transfer cross sections for He-He+ between 2 eV and 100 eV,” J. Phys. B: At., Mol. Opt. Phys. 11, 2201–2207 (1978).10.1088/0022-3700/11/12/018
    [15]
    T. G. Winter and C. C. Lin, “Electron capture into excited states of helium by helium-ion impact on helium,” Phys. Rev. A 12, 434–443 (1975).10.1103/physreva.12.434
    [16]
    V. Pol, W. Kauppila, and J. T. Park, “Absolute differential elastic- and inelastic-scattering cross sections in 25-140 keV He+ + He collisions,” Phys. Rev. A 8, 2990–3000 (1973).10.1103/physreva.8.2990
    [17]
    M. Barat, D. Dhuicq, R. Francois, R. McCarroll, R. D. Piacentini, and A. Salin, “Inelastic processes in He+-He collisions,” J. Phys. B: At., Mol. Opt. Phys. 5, 1343–1350 (1972).10.1088/0022-3700/5/7/011
    [18]
    W. N. Shelton and P. A. Stoycheff, “Measurement of the total cross section for single-electron transfer in collisions of He+ with He in the energy range 2-22 keV,” Phys. Rev. A 3, 613–619 (1971).10.1103/physreva.3.613
    [19]
    L. Wolterbeek Muller and F. J. De Heer, “Electron capture into excited states by helium ions incident of noble gases,” Physica 48, 345–396 (1970).10.1016/0031-8914(70)90244-2
    [20]
    D. P. Sural, S. C. Mukherjee, and N. C. Sil, “Electron capture and excitation in He+-He collisions,” Phys. Rev. 164, 156–165 (1967).10.1103/physrev.164.156
    [21]
    C. F. Barnett and P. M. Stier, “Charge exchange cross sections for helium ions in gases,” Phys. Rev. 109, 385–390 (1958).10.1103/physrev.109.385
    [22]
    W. Lichten, “Resonant charge exchange in atomic collisions,” Phys. Rev. 131, 229–238 (1963).10.1103/physrev.131.229
    [23]
    E. Möbius, D. Hovestadt, B. Klecker, M. Scholer, G. Gloeckler, and F. M. Ipavich, “Direct observation of He+ pick-up ions of interstellar origin in the solar wind,” Nature 318, 426–429 (1985).10.1038/318426a0
    [24]
    C. J. Joyce, C. W. Smith, P. A. Isenberg, N. Murphy, and N. A. Schwadron, “Excitation of low-frequency waves in the solar wind by newborn intersteller pickup ions H+ and He+ as seen by voyager at 4.5 AU,” Astrophys. J. 724, 1256–1261 (2010).10.1088/0004-637x/724/2/1256
    [25]
    P. Swaczyna, D. J. McComas, and E. J. Zirnstein, “He+ ions comoving with the solar wind in the outer heliosphere,” Astrophys. J. 875, 36 (2019).10.3847/1538-4357/ab1081
    [26]
    R. K. Janev, “Atomic collisions in fusion plasma,” J. Phys. Colloq. 50, C1-421–C1-443 (1989).10.1051/jphyscol:1989150
    [27]
    A. A. Korotkov and R. K. Janev, “Attenuation of energetic helium beams in fusion plasmas,” Phys. Plasmas 3, 1512–1523 (1996).10.1063/1.872012
    [28]
    Atomic and Plasma–Material Interaction Data for Fusion, edited by R. E. H. Clark (International Atomic Energy Agency, Vienna, Austria, 2001).
    [29]
    N. Sisourat, I. Pilskog, and A. Dubois, “Nonperturbative treatment of multielectron processes in ion-molecule scattering: Application to He2+-H2 collisions,” Phys. Rev. A 84, 052722 (2011).10.1103/physreva.84.052722
    [30]
    J. W. Gao, Y. Wu, N. Sisourat, J. G. Wang, and A. Dubois, “Single- and double-electron transfer in low- and intermediate-energy C4+ + He collisions,” Phys. Rev. A 96, 052703 (2017).10.1103/physreva.96.052703
    [31]
    J. W. Gao, Y. Wu, J. G. Wang, A. Dubois, and N. Sisourat, “Double electron capture in H+ + H− collisions,” Phys. Rev. Lett. 122, 093402 (2019).10.1103/physrevlett.122.093402
    [32]
    L. Shampine and M. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem (Freeman, San Francisco, CA, 1975).
    [33]
    A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.7.1), available at: https://physics.nist.gov/asd, October 15, 2020, National Institute of Standards and Technology, Gaithersburg, MD, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (54) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return