Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Jourdain N., Chaulagain U., Havlík M., Kramer D., Kumar D., Majerová I., Tikhonchuk V. T., Korn G., Weber S.. The L4n laser beamline of the P3-installation: Towards high-repetition rate high-energy density physics at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2021, 6(1): 015401. doi: 10.1063/5.0022120
Citation: Jourdain N., Chaulagain U., Havlík M., Kramer D., Kumar D., Majerová I., Tikhonchuk V. T., Korn G., Weber S.. The L4n laser beamline of the P3-installation: Towards high-repetition rate high-energy density physics at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2021, 6(1): 015401. doi: 10.1063/5.0022120

The L4n laser beamline of the P3-installation: Towards high-repetition rate high-energy density physics at ELI-Beamlines

doi: 10.1063/5.0022120
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: stefan.weber@eli-beams.eu
  • Received Date: 2020-07-17
  • Accepted Date: 2020-10-24
  • Available Online: 2021-01-01
  • Publish Date: 2021-01-15
  • The P3 installation of ELI-Beamlines is conceived as an experimental platform for multiple high-repetition-rate laser beams spanning time scales from femtosecond via picosecond to nanosecond. The upcoming L4n laser beamline will provide shaped nanosecond pulses of up to 1.9 kJ at a maximum repetition rate of 1 shot/min. This beamline will provide unique possibilities for high-pressure, high-energy-density physics, warm dense matter, and laser–plasma interaction experiments. Owing to the high repetition rate, it will become possible to obtain considerable improvements in data statistics, in particular, for equation-of-state data sets. The nanosecond beam will be coupled with short sub-picosecond pulses, providing high-resolution diagnostic tools by either irradiating a backlighter target or driving a betatron setup to generate energetic electrons and hard X-rays.
  • loading
  • [1]
    ELI Extreme Light Infrastructure (Whitebook), edited by G. Mourou, G. Korn, W. Sandner, and J. Collier (THOSS Media GmbH, Berlin, Germany, 2011).
    [2]
    See http://www.eli-beams.eu for extreme light infrastructure beamlines.
    [3]
    G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309 (2006).10.1103/revmodphys.78.309
    [4]
    R. P. Drake, High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (Springer Verlag Berlin, 2006).
    [5]
    Frontiers and Challenges in Warm Dense Matter, edited by F. Graziani, M. Desjarlais, R. Redmer, and S. Trickey (Springer International Publisher, 2014).
    [6]
    C. Thaury, F. Quéré, J.-P. Geindre et al., “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424 (2007).10.1038/nphys595
    [7]
    S. Weber, S. Bechet, S. Borneis et al., “P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines,” Matter Radiat. Extremes 2, 149 (2017).10.1016/j.mre.2017.03.003
    [8]
    E. I. Moses, R. N. Boyd, B. A. Remington et al., “The national ignition facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).10.1063/1.3116505
    [9]
    J.-L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule: LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016).10.1088/1742-6596/688/1/012067
    [10]
    J. Kelly, L. Waxer, V. Bagnoud et al., “OMEGA EP: High-energy petawatt capability for the OMEGA laser facility,” J. Phys. 133, 75–80 (2005).10.1051/jp4:2006133015
    [11]
    J. Kelly, L. Waxer, V. Bagnoud et al., “OMEGA EP: High-energy petawatt capability for the OMEGA laser facility,” J. Phys. 133, 75–80 (2005). https://doi.org/10.1051/jp4:2006133015
    [12]
    N. Hopps, C. Danson, S. Duffield et al., “Overview of laser systems for the Orion facility at the AWE,” Appl. Opt. 52, 3597–3607 (2013).10.1364/ao.52.003597
    [13]
    C. Danson, P. Brummitt, R. Clarke et al., “Vulcan Petawatt—An ultra-high-intensity interaction facility,” Nucl. Fusion 44, S239 (2004).10.1088/0029-5515/44/12/s15
    [14]
    K. Jungwirth, A. Cejnarova, L. Juha et al., “The Prague asterix laser system,” Phys. Plasmas 8, 2495–2501 (2001).10.1063/1.1350569
    [15]
    M. Koenig, A. Benuzzi-Mounaix, N. Ozaki et al., “High energy density physics on LULI2000 laser facility,” AIP Conf. Proc. 845, 1421–1424 (2006).10.1063/1.2263591
    [16]
    S. B. Brown, A. Hashim, A. Gleason et al., “Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the linac coherent light source,” Rev. Sci. Instrum. 88, 105113 (2017).10.1063/1.4997756
    [17]
    O. Hurricane, D. Callahan, D. T. Casey et al., “Inertially confined fusion plasmas dominated by alpha-particle self-heating,” Nat. Phys. 12, 800 (2016).10.1038/nphys3720
    [18]
    S. Le Pape, L. F. Berzak Hopkins, L. Divol et al., “Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility,” Phys. Rev. Lett. 120, 245003 (2018).10.1103/physrevlett.120.245003
    [19]
    J.-L. Miquel and E. Prene, “LMJ and PETAL status and program overview,” Nucl. Fusion 59, 032005 (2019).10.1088/1741-4326/aac343
    [20]
    S. Fujioka, Z. Zhang, N. Yamamoto et al., “High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics,” Plasma Phys. Controlled Fusion 54, 124042 (2012).10.1088/0741-3335/54/12/124042
    [21]
    A. Randewich and C. Danson, “High energy density physics at the atomic weapons establishment,” High Power Laser Sci. Eng. 2, e40 (2014).10.1017/hpl.2014.45
    [22]
    D. Kraus, J. Vorberger, A. Pak et al., “Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions,” Nat. Astron. 1, 606 (2017).10.1038/s41550-017-0219-9
    [23]
    P. Mason, S. Banerjee, J. Smith et al., “Development of a 100 J, 10 Hz laser for compression experiments at the high energy density instrument at the European XFEL,” High Power Laser Sci. Eng. 6, e65 (2018).10.1017/hpl.2018.56
    [24]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435 (2016).10.1038/nphys3736
    [25]
    B. A. Remington, “High energy density laboratory astrophysics,” Plasma Phys. Controlled Fusion 47, A191 (2005).10.1088/0741-3335/47/5a/014
    [26]
    M. D. Knudson and M. P. Desjarlais, “Shock compression of quartz to 1.6 TPa: Redefining a pressure standard,” Phys. Rev. Lett. 103, 225501 (2009).10.1103/physrevlett.103.225501
    [27]
    C. E. Ragan, “Ultrahigh-pressure shock-wave experiments,” Phys. Rev. A 21, 458 (1980).10.1103/physreva.21.458
    [28]
    A. Fernandez-Pañella, M. Millot, D. E. Fratanduono et al., “Shock compression of liquid deuterium up to 1 TPa,” Phys. Rev. Lett. 122, 255702 (2019).10.1103/physrevlett.122.255702
    [29]
    B. Rus, P. Bakule, D. Kramer et al., “ELI-Beamlines: Development of next generation short-pulse laser systems,” Proc. SPIE. 9515, 95150F (2015).10.1117/12.2184996
    [30]
    F. Batysta, R. Antipenkov, J. Bartonicek et al., “Spectral shaping of a 5 Hz, multi-joule OPCPA frontend for a 10 PW laser system,” Proc. SPIE. 11034, 11034OC (2019).10.1117/12.2524951
    [31]
    S. Vyhlidka, D. Kramer, M. Kepler et al., “Optimization of a grating pulse stretcher suitable for kJ class 10 PW laser system,” Proc. SPIE. 10238, 102380T (2017).10.1117/12.2270477
    [32]
    G. Cheriaux, E. Gaul, R. Antipenkov et al., “kJ-10 PW class laser system at 1 shot a minute,” SPIE Proc. 10898, 1089806 (2019).10.1117/12.2507627
    [33]
    E. Gaul, G. Cheriaux, R. Antipenkov et al., “Hybrid OPCPA/glass 10 PW laser at 1 shot a minute,” in OSA Technical Digest (online) (Optical Society of America, 2018), paper STu3M, STu3M.2.
    [34]
    O. Morice, “Miro: Complete modeling and software for pulse amplification and propagation in high-power laser systems,” Opt. Eng. 42, 1530–1541 (2003).10.1117/1.1574326
    [35]
    I. Prencipe, J. Fuchs, S. Pascarelli et al., “Targets for high repetition rate laser facilities: Needs, challenges and perspectives,” High Power Laser Sci. Eng. 5, e17 (2017).10.1017/hpl.2017.18
    [36]
    J. S. Pearlman and G. H. Dahlbacka, “Emission of rf radiation from laser-produced plasmas,” J. Appl. Phys. 49, 457 (1978).10.1063/1.324360
    [37]
    A. Poyé, S. Hulin, M. Bailly-Grandvaux et al., “Physics of giant electromagnetic pulse generation in short-pulse laser experiments,” Phys. Rev. E 91, 043106 (2015).10.1103/physreve.91.043106
    [38]
    F. Consoli, R. De Angelis, T. Robinson et al., “Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range laser-matter interactions,” Sci. Rep. 9, 8551 (2019).10.1038/s41598-019-44937-2
    [39]
    T. S. Duffy and R. F. Smith, “Ultra-high pressure dynamic compression of geological materials,” Front. Earth Sci. 7, 23 (2019).10.3389/feart.2019.00023
    [40]
    R. Jeanloz, P. M. Celliers, G. W. Collins et al., “Achieving high-density states through shock-wave loading of precompressed samples,” Proc. Natl. Acad. Sci. U. S. A. 104, 9172 (2007).10.1073/pnas.0608170104
    [41]
    M. Guarguaglini, J.-A. Hernandez, A. Benuzzi-Mounaix et al., “Characterizing equation of state and optical properties of dynamically pre-compressed materials,” Phys. Plasmas 26, 042704 (2019).10.1063/1.5060732
    [42]
    R. S. McWilliams, D. K. Spaulding, J. H. Eggert et al., “Phase transformations and metallization of magnesium oxide at high pressure and temperature,” Science 338, 1330 (2012).10.1126/science.1229450
    [43]
    K. Miyanishi, Y. Tange, N. Ozaki et al., “Laser-shock compression of magnesium oxide in the warm-dense-matter regime,” Phys. Rev. E 92, 023103 (2015).10.1103/physreve.92.023103
    [44]
    S. Root, L. Shulenburger, R. Lemke et al., “Shock response and phase transitions of MgO at planetary impact conditions,” Phys. Rev. Lett. 115, 198501 (2015).10.1103/physrevlett.115.198501
    [45]
    R. M. Bolis, G. Morard, T. Vinci et al., “Decaying shock studies of phase transitions in MgO-SiO2 systems: Implications for the super-Earths’ interiors,” Geophys. Res. Lett. 43, 9475 (2016).10.1002/2016gl070466
    [46]
    R. Musella, S. Mazevet, and F. Guyot, “Physical properties of MgO at deep planetary conditions,” Phys. Rev. B 99, 064110 (2019).10.1103/physrevb.99.064110
    [47]
    J. Bouchet, F. Bottin, V. Recoules et al., “Ab initio calculations of the B1-B2 phase transition in MgO,” Phys. Rev. B 99, 094113 (2019).10.1103/physrevb.99.094113
    [48]
    C. A. McCoy, M. C. Marshall, D. N. Polsin et al., “Hugoniot, sound velocity, and shock temperature of MgO to 2300 GPa,” Phys. Rev. B 100, 014106 (2019).10.1103/physrevb.100.014106
    [49]
    U. Chaulagain, K. Boháček, J. Vančura et al., “LWFA-driven betatron source for plasma physics platform at ELI-Beamlines,” in Proceedings of the 16th International Conference on X-Ray Lasers (Springer Nature, Switzerland, 2020), p. 117, https://doi.org/10.1007/978-3-030-35453-4.
    [50]
    S. Fourmaux, E. Hallin, U. Chaulagain et al., “Laser-based synchrotron x-ray radiation experimental scaling,” Opt. Express 28, 3147 (2020).10.1364/oe.383818
    [51]
    A. Rousse, K. T. Phuoc, R. Shah et al., “Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction,” Phys. Rev. Lett. 93, 135005 (2004).10.1103/physrevlett.93.135005
    [52]
    M. Kozlova, I. Andriyash, J. Gautier et al., “Hard x-rays from laser-wakefield accelerators in density tailored plasmas,” Phys. Rev. X 10, 011061 (2020).10.1103/physrevx.10.011061
    [53]
    S. Fourmaux, E. Hallin, A. Krol et al., “X-ray phase contrast imaging of spherical capsules,” Opt. Express 28, 13978–13990 (2020).10.1364/oe.386618
    [54]
    P. Kirkpatrick and A. V. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 766 (1948).10.1364/josa.38.000766
    [55]
    B. R. Maddox, H. S. Park, B. A. Remington et al., “Absolute measurements of x-ray backlighter sources at energies above 10 keV,” Phys. Plasmas 18, 056709 (2011).10.1063/1.3582134
    [56]
    M. Harmand, F. Dorchies, O. Peyrusse et al., “Broad M-band multi-keV x-ray emission from plasmas created by short laser pulses,” Phys. Plasmas 16, 063301 (2009).10.1063/1.3148333
    [57]
    K. Zeil, S. D. Kraft, S. Bock et al., “The scaling of proton energies in ultrashort pulse laser plasma acceleration,” New J. Phys. 12, 045015 (2010).10.1088/1367-2630/12/4/045015
    [58]
    O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Controlled Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
    [59]
    F. P. Condamine, E. Filippov, P. Angelo et al., “High-resolution spectroscopic study of hot electron induced copper M-shell charge states emission from laser produced plasmas,” High Energy Density Phys. 32, 89 (2019).10.1016/j.hedp.2019.06.004
    [60]
    M. Z. Mo, Z. Chen, S. Fourmaux et al., “Laser wakefield generated x-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum,” Rev. Sci. Instrum. 84, 123106 (2013).10.1063/1.4842237
    [61]
    B. Kettle, E. Gerstmayr, M. Streeter et al., “Single-shot multi-keV x-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source,” Phys. Rev. Lett. 123, 254801 (2019).10.1103/physrevlett.123.254801
    [62]
    B. Mahieu, N. Jourdain, K. Ta Phuoc et al., “Probing warm dense matter using femtosecond x-ray absorption spectroscopy with a laser-produced betatron source,” Nat. Commun. 9, 3276 (2018).10.1038/s41467-018-05791-4
    [63]
    A. Denoeud, A. Benuzzi-Mounaix, A. Ravasio et al., “Metallization of warm dense SiO2 studied by XANES spectroscopy,” Phys. Rev. Lett. 113, 116404 (2014).10.1103/physrevlett.113.116404
    [64]
    K. Falk, S. P. Regan, J. Vorberger et al., “Comparison between x-ray scattering and velocity-interferometry measurements from shocked liquid deuterium,” Phys. Rev. E 87, 043112 (2013).10.1103/physreve.87.043112
    [65]
    A. Denoeud, N. Ozaki, A. Benuzzi-Mounaix et al., “Dynamic x-ray diffraction observation of shocked solid iron up to 170 GPa,” Proc. Natl. Acad. Sci. U. S. A. 113, 7745 (2016).10.1073/pnas.1512127113
    [66]
    J. Wood, D. Chapman, K. Poder et al., “Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator,” Sci. Rep. 8, 11010 (2018).10.1038/s41598-018-29347-0
    [67]
    F. Barbato, S. Atzeni, D. Batani et al., “Quantitative phase contrast imaging of a shock-wave with a laser-plasma based x-ray source,” Sci. Rep. 9, 18805 (2019).10.1038/s41598-019-55074-1
    [68]
    A. Ravasio, M. Koenig, S. Le Pape et al., “Hard x-ray radiography for density measurement in shock compressed matter,” Phys. Plasmas 15, 060701 (2008).10.1063/1.2928156
    [69]
    A. Morace, L. Fedeli, D. Batani et al., “Development of x-ray radiography for high energy density physics,” Phys. Plasmas 21, 102712 (2014).10.1063/1.4900867
    [70]
    R. A. Snavely, M. H. Key, S. P. Hatchett et al., “Intense high-energy proton beams from Petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
    [71]
    G. Sarri, C. A. Cecchetti, L. Romagnani et al., “The application of laser-driven proton beams to the radiography of intense laser–hohlraum interactions,” New J. Phys. 12, 045006 (2010).10.1088/1367-2630/12/4/045006
    [72]
    R. P. Drake, F. W. Doss, R. G. McClarren et al., “Radiative effects in radiative shocks in shock tubes,” High Energy Density Phys. 7, 130 (2011).10.1016/j.hedp.2011.03.005
    [73]
    P. Mabey, B. Albertazzi, E. Falize et al., “Laboratory study of stationary accretion shock relevant to astrophysical systems,” Sci. Rep. 9, 8157 (2019).10.1038/s41598-019-44596-3
    [74]
    U. Chaulagain, C. Stehlé, J. Larour et al., “Structure of a laser-driven radiative shock,” High Energy Density Phys. 17, 106 (2015).10.1016/j.hedp.2015.01.003
    [75]
    T. Clayson, F. Suzuki-Vidal, S. V. Lebedev et al., “Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors,” High Energy Density Phys. 23, 60 (2017).10.1016/j.hedp.2017.03.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (190) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return