| Citation: | Barges Delattre Tanguy, Rassou Sébastien, Pain Jean-Christophe. Modeling stopping power of ions in plasmas using parametric potentials[J]. Matter and Radiation at Extremes, 2025, 10(6): 067603. doi: 10.1063/5.0287744 |
| [1] |
J. Ongena, R. Koch, R. Wolf, and H. Zohm, “Magnetic-confinement fusion,” Nat. Phys. 12, 398–410 (2016).10.1038/nphys3745
|
| [2] |
S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics (Oxford University Press, Oxford, 2004), p. 371.
|
| [3] |
S. Humphries, J. J. Lee, and R. N. Sudan, “Generation of intense pulsed ion beams,” Appl. Phys. Lett. 25, 20–22 (1974).10.1063/1.1655261
|
| [4] |
D. S. Prono, J. M. Creedon, I. Smith, and N. Bergstrom, “Multiple reflections of electrons and the possibility of intense positive-ion flow in high ν/γ diodes,” J. Appl. Phys. 46, 3310–3319 (1975).10.1063/1.322056
|
| [5] |
J. W. Poukey, “Ion effects in relativistic diodes,” Appl. Phys. Lett. 26, 145–146 (1975).10.1063/1.88121
|
| [6] |
J. P. Quintenz, D. D. Bloomquist, R. J. Leeper, T. A. Mehlhorn, C. L. Olson et al., “Light ion driven inertial confinement fusion,” Prog. Nucl. Energy 30, 183–242 (1996).10.1016/0149-1970(95)00083-v
|
| [7] |
J. K. van Abbema, M.-J. van Goethem, J. Mulder, A. K. Biegun, M. J. W. Greuter et al., “High accuracy proton relative stopping power measurement,” Nucl. Instrum. Methods Phys. Res., Sect. B 436, 99–106 (2018).10.1016/j.nimb.2018.09.015
|
| [8] |
C. Deutsch and G. Maynard, “Ion stopping in dense plasmas: A basic physics approach,” Matter Radiat. Extremes 1, 277–307 (2016).10.1016/j.mre.2016.11.004
|
| [9] |
O. Poujade, M. Bonnefille, and M. Vandenboomgaerde, “Radiative ablation with two ionizing fronts when opacity displays a sharp absorption edge,” Phys. Rev. E 92, 053105 (2015).10.1103/physreve.92.053105
|
| [10] |
H. Bethe, “Theory of the passage of fast corpuscular rays through matter,” Ann. Phys. 5, 325–400 (1930).10.1002/andp.19303970303
|
| [11] |
L. C. Northcliffe, “Energy loss and effective charge of heavy ions in aluminum,” Phys. Rev. 120, 1744–1757 (1960).10.1103/physrev.120.1744
|
| [12] |
H. D. Betz and L. Grodzins, “Charge states and excitation of fast heavy ions passing through solids: A new model for the density effect,” Phys. Rev. Lett. 25, 211–214 (1970).10.1103/physrevlett.25.211
|
| [13] |
M. D. Brown and C. D. Moak, “Stopping powers of some solids for 30–90 MeV 238U ions,” Phys. Rev. B 6, 90–94 (1972).10.1103/physrevb.6.90
|
| [14] |
M. Gauthier, S. N. Chen, A. Levy, P. Audebert, C. Blancard et al., “Charge equilibrium of a laser-generated carbon-ion beam in warm dense matter,” Phys. Rev. Lett. 110, 135003 (2013).10.1103/physrevlett.110.135003
|
| [15] |
S. Y. Gus’kov, N. V. Zmitrenko, D. V. Il’in, A. A. Levkovskii, V. B. Rozanov et al., “A method for calculating the effective charge of ions decelerated in a hot dense plasma,” Plasma Phys. Rep. 35, 709–718 (2009).10.1134/s1063780x09090013
|
| [16] | |
| [17] |
J. L. Dehmer, M. Inokuti, and R. P. Saxon, “Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second row,” Phys. Rev. A. 12, 102–121 (1975).10.1103/physreva.12.102
|
| [18] |
A. E. S. Green, D. L. Sellin, and A. S. Zachor, “Analytic independent-particle model for atoms,” Phys. Rev. 184, 1–9 (1969).10.1103/physrev.184.1
|
| [19] |
R. H. Garvey, C. H. Jackman, and A. E. S. Green, “Independent-particle-model potentials for atoms and ions with 36 < Z ≤ 54 and a modified Thomas–Fermi atomic energy formula,” Phys. Rev. A. 12, 1144–1152 (1975).10.1103/physreva.12.1144
|
| [20] |
J. Yunta, E. Rodríguez Máyquez, and C. Sánchez del Río, “Self-consistent analytic potential for atoms,” Phys. Rev. A. 9, 1483–1485 (1974).10.1103/PhysRevA.9.1483
|
| [21] |
P. Martel, L. Doreste, E. Minguez, and J. M. Gil, “A parametric potential for ions from helium to iron isoelectronic sequences,” J. Quant. Spectrosc. Radiat. Transfer 54, 621–636 (1995).10.1016/0022-4073(95)00099-7
|
| [22] |
J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).10.1093/comjnl/7.4.308
|
| [23] |
M. Klapisch, “A program for atomic wavefunction computations by the parametric potential method,” Comput. Phys. Commun. 2, 239–260 (1971).10.1016/0010-4655(71)90001-4
|
| [24] |
C. Tannous, K. Fakhreddine, and J. Langlois, “Parametric potential determination by the canonical function method,” J. Phys. IV Fr. 9, Pr6-71 (1999).10.1051/jp4:1999616
|
| [25] |
T. J. Callow, D. Kotik, E. Kraisler, and A. Cangi, “atoMEC: An open-source average-atom Python code,” in Proceedings of the 21st Python in Science Conference (SciPy, 2022), pp. 37–45.
|
| [26] |
G. B. Zimmerman, “Monte Carlo methods in ICF,” AIP Conf. Proc. 406, 23–41 (1997).10.1063/1.53528
|
| [27] |
J. Lindhard and M. Scharff, “Energy loss in matter by fast particles of low charge,” Dan. Mat. Fys. Medd. 27, 1–32 (1953).
|
| [28] | |
| [29] |
J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).
|
| [30] |
G. Maynard and C. Deutsch, “Born random phase approximation for ion stopping in an arbitrarily degenerate electron fluid,” J. Phys. 46, 1113–1122 (1985).10.1051/jphys:019850046070111300
|
| [31] |
C. Gouedard and C. Deutsch, “Dense electron-gas response at any degeneracy,” J. Math. Phys. 19, 32–38 (1978).10.1063/1.523508
|
| [32] |
L. S. Brown, D. L. Preston, and R. L. Singleton, “Charged particle motion in a highly ionized plasma,” Phys. Rep. 410, 237–333 (2005).10.1016/j.physrep.2005.01.001
|
| [33] |
W. Cayzac, A. Frank, A. Ortner, V. Bagnoud, M. M. Basko et al., “Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter,” Nat. Commun. 8, 15693 (2017).10.1038/ncomms15693
|
| [34] |
D. O. Gericke and M. Schlanges, “Beam-plasma coupling effects on the stopping power of dense plasmas,” Phys. Rev. E 60, 904–910 (1999).10.1103/physreve.60.904
|
| [35] | |
| [36] |
R. P. Drake, High-Energy-Density Physics, Foundation of Inertial Fusion and Experimental Astrophysics (Springer, 2018).
|
| [37] |
H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3–12 (2005).10.1016/j.hedp.2005.07.001
|
| [38] | |
| [39] |
A. Mančić, J. Robiche, P. Antici, P. Audebert, C. Blancard et al., “Isochoric heating of solids by laser-accelerated protons: Experimental characterization and self-consistent hydrodynamic modeling,” High Energy Density Phys. 6, 21–28 (2010).10.1016/j.hedp.2009.06.008
|
| [40] |
D. J. Hoarty, T. Guymer, S. F. James, E. Gumbrell, C. R. D. Brown et al., “Equation of state studies of warm dense matter samples heated by laser produced proton beams,” High Energy Density Phys. 8, 50–54 (2012).10.1016/j.hedp.2011.11.008
|
| [41] |
S. Rassou, M. Bonneau, C. Rousseaux, X. Vaisseau, W. Cayzac et al., “Numerical modeling of isochoric heating experiments using the Troll code in the warm dense matter regime,” Contrib. Plasma Phys. e70030 (published online) (2025).10.1002/ctpp.70030
|
| [42] |
G. Ecker and W. Kröll, “Lowering of the ionization energy for a plasma in thermodynamic equilibrium,” Phys. Fluids 6, 62–69 (1963).10.1063/1.1724509
|
| [43] |
J. C. Stewart and K. D. J. Pyatt, “Lowering of ionization potentials in plasmas,” Astrophys. J. 144, 1203–1211 (1966).10.1086/148714
|
| [44] |
T. R. Preston, S. M. Vinko, O. Ciricosta, H.-K. Chung, R. W. Lee et al., “The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas,” High Energy Density Phys. 9, 258–263 (2013).10.1016/j.hedp.2012.12.014
|
| [45] |
B. J. B. Crowley, “Continuum lowering—A new perspective,” High Energy Density Phys. 13, 84–102 (2014).10.1016/j.hedp.2014.04.003
|
| [46] |
J.-C. Pain, “Multi-configuration calculation of ionization potential depression,” Plasma 5, 384–407 (2022).10.3390/plasma5040029
|
| [47] |
J. F. Ziegler, “Stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).10.1063/1.369844
|
| [48] |
H. Bichsel, “Shell corrections in stopping powers,” Phys. Rev. A. 65, 052709 (2002).10.1103/physreva.65.052709
|
| [49] |
U. Fano, “Penetration of protons, alpha particles, and mesons,” Annu. Rev. Nucl. Sci. 13, 1–66 (1963).10.1146/annurev.ns.13.120163.000245
|
| [50] |
W. H. Barkas, W. Birnbaum, and F. M. Smith, “Mass-ratio method applied to the measurement of L-meson masses and the energy balance in pion decay,” Phys. Rev. 101, 778–795 (1956).10.1103/physrev.101.778
|
| [51] |
W. H. Barkas, N. J. Dyer, and H. H. Heckman, “Resolution of the Σ−–mass anomaly,” Phys. Rev. Lett. 11, 26–27 (1963).10.1103/PhysRevLett.11.26
|
| [52] |
G. Maynard and C. Deutsch, “The Barkas effect or Z31-contribution to stopping of swift charged particles-contribution to stopping of swift charged particles,” J. Phys. Lett. 43, 223 (1982).10.1051/jphyslet:01982004307022300
|
| [53] |
L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Möller, J. O. P. Pedersen et al., “Measurement of the Z31 contribution to the stopping power using MeV protons and antiprotons: The Barkas effect,” Phys. Rev. Lett. 62, 1731–1734 (1989).10.1103/physrevlett.62.1731
|
| [54] |
S. P. Møller, E. Uggerhøj, H. Bluhme, H. Knudsen, U. Mikkelsen et al., “Measurement of the Barkas effect around the stopping-power maximum for light and heavy targets,” Nucl. Instrum. Methods Phys. Res., Sect. B 122, 162–166 (1997).10.1016/S0168-583X(96)00774-4
|