Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 6
Nov.  2025
Turn off MathJax
Article Contents
Barges Delattre Tanguy, Rassou Sébastien, Pain Jean-Christophe. Modeling stopping power of ions in plasmas using parametric potentials[J]. Matter and Radiation at Extremes, 2025, 10(6): 067603. doi: 10.1063/5.0287744
Citation: Barges Delattre Tanguy, Rassou Sébastien, Pain Jean-Christophe. Modeling stopping power of ions in plasmas using parametric potentials[J]. Matter and Radiation at Extremes, 2025, 10(6): 067603. doi: 10.1063/5.0287744

Modeling stopping power of ions in plasmas using parametric potentials

doi: 10.1063/5.0287744
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jean-christophe.pain@cea.fr
  • Received Date: 2025-06-26
  • Accepted Date: 2025-09-11
  • Available Online: 2025-11-28
  • Publish Date: 2025-11-01
  • We present a study of the ion stopping power due to free and bound electrons in a warm dense plasma. Our main goal is to propose a method of stopping-power calculation expected to be valid for any ionization degree. The free-electron contribution is described by the Maynard–Deutsch–Zimmerman formula, and the bound-electron contribution relies on the Bethe formula with corrections, in particular taking into account density and shell effects. The results of the bound-state computation using three different parametric potentials are investigated within the Garbet formalism for the mean excitation energy. The first parametric potential is due to Green, Sellin, and Zachor, the second one was proposed by Yunta, and the third one was introduced by Klapisch in the framework of atomic-structure computations. The results are compared with those of self-consistent average-atom calculations. This approach correctly bridges the limits of neutral and fully ionized matter.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Tanguy Barges Delattre: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Sébastien Rassou: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Jean-Christophe Pain: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    J. Ongena, R. Koch, R. Wolf, and H. Zohm, “Magnetic-confinement fusion,” Nat. Phys. 12, 398–410 (2016).10.1038/nphys3745
    [2]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics (Oxford University Press, Oxford, 2004), p. 371.
    [3]
    S. Humphries, J. J. Lee, and R. N. Sudan, “Generation of intense pulsed ion beams,” Appl. Phys. Lett. 25, 20–22 (1974).10.1063/1.1655261
    [4]
    D. S. Prono, J. M. Creedon, I. Smith, and N. Bergstrom, “Multiple reflections of electrons and the possibility of intense positive-ion flow in high ν/γ diodes,” J. Appl. Phys. 46, 3310–3319 (1975).10.1063/1.322056
    [5]
    J. W. Poukey, “Ion effects in relativistic diodes,” Appl. Phys. Lett. 26, 145–146 (1975).10.1063/1.88121
    [6]
    J. P. Quintenz, D. D. Bloomquist, R. J. Leeper, T. A. Mehlhorn, C. L. Olson et al., “Light ion driven inertial confinement fusion,” Prog. Nucl. Energy 30, 183–242 (1996).10.1016/0149-1970(95)00083-v
    [7]
    J. K. van Abbema, M.-J. van Goethem, J. Mulder, A. K. Biegun, M. J. W. Greuter et al., “High accuracy proton relative stopping power measurement,” Nucl. Instrum. Methods Phys. Res., Sect. B 436, 99–106 (2018).10.1016/j.nimb.2018.09.015
    [8]
    C. Deutsch and G. Maynard, “Ion stopping in dense plasmas: A basic physics approach,” Matter Radiat. Extremes 1, 277–307 (2016).10.1016/j.mre.2016.11.004
    [9]
    O. Poujade, M. Bonnefille, and M. Vandenboomgaerde, “Radiative ablation with two ionizing fronts when opacity displays a sharp absorption edge,” Phys. Rev. E 92, 053105 (2015).10.1103/physreve.92.053105
    [10]
    H. Bethe, “Theory of the passage of fast corpuscular rays through matter,” Ann. Phys. 5, 325–400 (1930).10.1002/andp.19303970303
    [11]
    L. C. Northcliffe, “Energy loss and effective charge of heavy ions in aluminum,” Phys. Rev. 120, 1744–1757 (1960).10.1103/physrev.120.1744
    [12]
    H. D. Betz and L. Grodzins, “Charge states and excitation of fast heavy ions passing through solids: A new model for the density effect,” Phys. Rev. Lett. 25, 211–214 (1970).10.1103/physrevlett.25.211
    [13]
    M. D. Brown and C. D. Moak, “Stopping powers of some solids for 30–90 MeV 238U ions,” Phys. Rev. B 6, 90–94 (1972).10.1103/physrevb.6.90
    [14]
    M. Gauthier, S. N. Chen, A. Levy, P. Audebert, C. Blancard et al., “Charge equilibrium of a laser-generated carbon-ion beam in warm dense matter,” Phys. Rev. Lett. 110, 135003 (2013).10.1103/physrevlett.110.135003
    [15]
    S. Y. Gus’kov, N. V. Zmitrenko, D. V. Il’in, A. A. Levkovskii, V. B. Rozanov et al., “A method for calculating the effective charge of ions decelerated in a hot dense plasma,” Plasma Phys. Rep. 35, 709–718 (2009).10.1134/s1063780x09090013
    [16]
    [17]
    J. L. Dehmer, M. Inokuti, and R. P. Saxon, “Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second row,” Phys. Rev. A. 12, 102–121 (1975).10.1103/physreva.12.102
    [18]
    A. E. S. Green, D. L. Sellin, and A. S. Zachor, “Analytic independent-particle model for atoms,” Phys. Rev. 184, 1–9 (1969).10.1103/physrev.184.1
    [19]
    R. H. Garvey, C. H. Jackman, and A. E. S. Green, “Independent-particle-model potentials for atoms and ions with 36 < Z ≤ 54 and a modified Thomas–Fermi atomic energy formula,” Phys. Rev. A. 12, 1144–1152 (1975).10.1103/physreva.12.1144
    [20]
    J. Yunta, E. Rodríguez Máyquez, and C. Sánchez del Río, “Self-consistent analytic potential for atoms,” Phys. Rev. A. 9, 1483–1485 (1974).10.1103/PhysRevA.9.1483
    [21]
    P. Martel, L. Doreste, E. Minguez, and J. M. Gil, “A parametric potential for ions from helium to iron isoelectronic sequences,” J. Quant. Spectrosc. Radiat. Transfer 54, 621–636 (1995).10.1016/0022-4073(95)00099-7
    [22]
    J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).10.1093/comjnl/7.4.308
    [23]
    M. Klapisch, “A program for atomic wavefunction computations by the parametric potential method,” Comput. Phys. Commun. 2, 239–260 (1971).10.1016/0010-4655(71)90001-4
    [24]
    C. Tannous, K. Fakhreddine, and J. Langlois, “Parametric potential determination by the canonical function method,” J. Phys. IV Fr. 9, Pr6-71 (1999).10.1051/jp4:1999616
    [25]
    T. J. Callow, D. Kotik, E. Kraisler, and A. Cangi, “atoMEC: An open-source average-atom Python code,” in Proceedings of the 21st Python in Science Conference (SciPy, 2022), pp. 37–45.
    [26]
    G. B. Zimmerman, “Monte Carlo methods in ICF,” AIP Conf. Proc. 406, 23–41 (1997).10.1063/1.53528
    [27]
    J. Lindhard and M. Scharff, “Energy loss in matter by fast particles of low charge,” Dan. Mat. Fys. Medd. 27, 1–32 (1953).
    [28]
    [29]
    J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).
    [30]
    G. Maynard and C. Deutsch, “Born random phase approximation for ion stopping in an arbitrarily degenerate electron fluid,” J. Phys. 46, 1113–1122 (1985).10.1051/jphys:019850046070111300
    [31]
    C. Gouedard and C. Deutsch, “Dense electron-gas response at any degeneracy,” J. Math. Phys. 19, 32–38 (1978).10.1063/1.523508
    [32]
    L. S. Brown, D. L. Preston, and R. L. Singleton, “Charged particle motion in a highly ionized plasma,” Phys. Rep. 410, 237–333 (2005).10.1016/j.physrep.2005.01.001
    [33]
    W. Cayzac, A. Frank, A. Ortner, V. Bagnoud, M. M. Basko et al., “Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter,” Nat. Commun. 8, 15693 (2017).10.1038/ncomms15693
    [34]
    D. O. Gericke and M. Schlanges, “Beam-plasma coupling effects on the stopping power of dense plasmas,” Phys. Rev. E 60, 904–910 (1999).10.1103/physreve.60.904
    [35]
    [36]
    R. P. Drake, High-Energy-Density Physics, Foundation of Inertial Fusion and Experimental Astrophysics (Springer, 2018).
    [37]
    H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3–12 (2005).10.1016/j.hedp.2005.07.001
    [38]
    [39]
    A. Mančić, J. Robiche, P. Antici, P. Audebert, C. Blancard et al., “Isochoric heating of solids by laser-accelerated protons: Experimental characterization and self-consistent hydrodynamic modeling,” High Energy Density Phys. 6, 21–28 (2010).10.1016/j.hedp.2009.06.008
    [40]
    D. J. Hoarty, T. Guymer, S. F. James, E. Gumbrell, C. R. D. Brown et al., “Equation of state studies of warm dense matter samples heated by laser produced proton beams,” High Energy Density Phys. 8, 50–54 (2012).10.1016/j.hedp.2011.11.008
    [41]
    S. Rassou, M. Bonneau, C. Rousseaux, X. Vaisseau, W. Cayzac et al., “Numerical modeling of isochoric heating experiments using the Troll code in the warm dense matter regime,” Contrib. Plasma Phys. e70030 (published online) (2025).10.1002/ctpp.70030
    [42]
    G. Ecker and W. Kröll, “Lowering of the ionization energy for a plasma in thermodynamic equilibrium,” Phys. Fluids 6, 62–69 (1963).10.1063/1.1724509
    [43]
    J. C. Stewart and K. D. J. Pyatt, “Lowering of ionization potentials in plasmas,” Astrophys. J. 144, 1203–1211 (1966).10.1086/148714
    [44]
    T. R. Preston, S. M. Vinko, O. Ciricosta, H.-K. Chung, R. W. Lee et al., “The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas,” High Energy Density Phys. 9, 258–263 (2013).10.1016/j.hedp.2012.12.014
    [45]
    B. J. B. Crowley, “Continuum lowering—A new perspective,” High Energy Density Phys. 13, 84–102 (2014).10.1016/j.hedp.2014.04.003
    [46]
    J.-C. Pain, “Multi-configuration calculation of ionization potential depression,” Plasma 5, 384–407 (2022).10.3390/plasma5040029
    [47]
    J. F. Ziegler, “Stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).10.1063/1.369844
    [48]
    H. Bichsel, “Shell corrections in stopping powers,” Phys. Rev. A. 65, 052709 (2002).10.1103/physreva.65.052709
    [49]
    U. Fano, “Penetration of protons, alpha particles, and mesons,” Annu. Rev. Nucl. Sci. 13, 1–66 (1963).10.1146/annurev.ns.13.120163.000245
    [50]
    W. H. Barkas, W. Birnbaum, and F. M. Smith, “Mass-ratio method applied to the measurement of L-meson masses and the energy balance in pion decay,” Phys. Rev. 101, 778–795 (1956).10.1103/physrev.101.778
    [51]
    W. H. Barkas, N. J. Dyer, and H. H. Heckman, “Resolution of the Σ−–mass anomaly,” Phys. Rev. Lett. 11, 26–27 (1963).10.1103/PhysRevLett.11.26
    [52]
    G. Maynard and C. Deutsch, “The Barkas effect or Z31-contribution to stopping of swift charged particles-contribution to stopping of swift charged particles,” J. Phys. Lett. 43, 223 (1982).10.1051/jphyslet:01982004307022300
    [53]
    L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Möller, J. O. P. Pedersen et al., “Measurement of the Z31 contribution to the stopping power using MeV protons and antiprotons: The Barkas effect,” Phys. Rev. Lett. 62, 1731–1734 (1989).10.1103/physrevlett.62.1731
    [54]
    S. P. Møller, E. Uggerhøj, H. Bluhme, H. Knudsen, U. Mikkelsen et al., “Measurement of the Barkas effect around the stopping-power maximum for light and heavy targets,” Nucl. Instrum. Methods Phys. Res., Sect. B 122, 162–166 (1997).10.1016/S0168-583X(96)00774-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (27) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return