Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 6
Nov.  2025
Turn off MathJax
Article Contents
Yuan Yongteng, Fan Zhengfeng, Tu Shaoyu, Yu Chengxin, Miao Wenyong, Yang Zhenghua, Yin Chuansheng, Sun Liang, Du Huabing, Wei Minxi, Tong Weichao, Jiang Wei, Yao Li, Shang Wanli, Yan Ji, Li Zhichao, Yang Dong, Yang Jiamin, Pu Yudong. Characterizing the evolution of mixing induced by Richtmyer–Meshkov instability in laser-driven reshock experiments[J]. Matter and Radiation at Extremes, 2025, 10(6): 067604. doi: 10.1063/5.0282977
Citation: Yuan Yongteng, Fan Zhengfeng, Tu Shaoyu, Yu Chengxin, Miao Wenyong, Yang Zhenghua, Yin Chuansheng, Sun Liang, Du Huabing, Wei Minxi, Tong Weichao, Jiang Wei, Yao Li, Shang Wanli, Yan Ji, Li Zhichao, Yang Dong, Yang Jiamin, Pu Yudong. Characterizing the evolution of mixing induced by Richtmyer–Meshkov instability in laser-driven reshock experiments[J]. Matter and Radiation at Extremes, 2025, 10(6): 067604. doi: 10.1063/5.0282977

Characterizing the evolution of mixing induced by Richtmyer–Meshkov instability in laser-driven reshock experiments

doi: 10.1063/5.0282977
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: cx_yu2013@163.com and pyd@caep.cn
  • Received Date: 2025-05-29
  • Accepted Date: 2025-09-05
  • Available Online: 2025-11-28
  • Publish Date: 2025-11-01
  • A reshock experiment for investigating the growth of material mixing driven by the Richtmyer–Meshkov instability has been conducted at the SG 100 kJ Laser Facility. We present a novel measurement technique for capturing the density field and the temporal evolution of the mixing width in rough aluminum subjected to reshocks under extreme conditions. The temporal evolution of the aluminum layer width obtained from backlit X-ray radiography demonstrates a sharp increase in width caused by reshocks, and simulations using the BHR-2 turbulent mixing model show excellent agreement with the measured aluminum layer width. Moreover, by utilizing a quasi-monochromatic X-ray imaging system at 5.2 keV, based on Bragg reflection from a spherically curved quartz crystal, we demonstrate direct quantification of the aluminum density field in mixed regions for the first time in a indirectly driven reshock experiment. The deviation between the calculated and actual density values is significantly less than 10% when the density of the aluminum region is below 0.7 g/cm3. The density field provides further information about variable-density turbulent mixing, which improves the constraints on simulations and enhances predictive capabilities for inertial confinement fusion target design and astrophysical shock scenarios.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Yongteng Yuan: Conceptualization (equal); Writing – original draft (equal). Zhengfeng Fan: Conceptualization (equal); Writing – original draft (equal). Shaoyu Tu: Data curation (equal). Chengxin Yu: Conceptualization (equal); Writing – original draft (equal). Wenyong Miao: Conceptualization (equal). Zhenghua Yang: Data curation (equal). Chuansheng Yin: Data curation (supporting). Liang Sun: Formal analysis (supporting). Huabing Du: Data curation (supporting). Minxi Wei: Data curation (supporting). Weichao Tong: Data curation (supporting). Wei Jiang: Data curation (supporting). Li Yao: Formal analysis (supporting). Wanli Shang: Formal analysis (supporting). Ji Yan: Investigation (equal). Zhichao Li: Investigation (supporting). Dong Yang: Investigation (supporting). Jiamin Yang: Investigation (supporting). Yudong Pu: Conceptualization (equal); Writing – original draft (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    Y. Zhou, B. A. Remington, H. F. Robey, A. W. Cook, S. G. Glendinning et al., “Progress in understanding turbulent mixing induced by Rayleigh–Taylor and Richtmyer–Meshkov instabilities,” Phys. Plasmas 10, 1883 (2003).10.1063/1.1560923
    [2]
    Y. Liu, D. H. Zhang, J. F. Xin, Y. Pu, J. Li et al., “Growth of ablative Rayleigh-Taylor instability induced by time-varying heat-flux perturbation,” Matter Radiat. Extremes 9, 016603 (2024).10.1063/5.0157344
    [3]
    J. Y. Fu, H. S. Zhang, H. B. Cai, P. L. Yao, and S. P. Zhu, “Effect of ablation on the nonlinear spike growth for the single-mode ablative Rayleigh–Taylor instability,” Matter Radiat. Extremes 8, 016901 (2023).10.1063/5.0106832
    [4]
    C. A. D. Stefano, G. Malamud, C. C. Kuranz, S. R. Klei, C. Stoeckl et al., “Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime,” Appl. Phys. Lett. 106, 114103 (2015).10.1063/1.4915303
    [5]
    K. A. Flippo, F. W. Doss, J. L. Kline, E. C. Merritt, D. Capelli et al., “Late-time mixing sensitivity to initial broadband surface roughness in high-energy-density shear layers,” Phys. Rev. Lett. 117, 225001 (2016).10.1103/physrevlett.117.225001
    [6]
    T. Wang, J. S. Bai, P. Li, B. Wang, L. Du et al., “Large-eddy simulations of the multi-mode Richtmyer–Meshkov instability and turbulent mixing under reshock,” High Energy Density Phys. 19, 65 (2016).10.1016/j.hedp.2016.03.001
    [7]
    G. Dimonte and M. Schneider, “Turbulent Richtmyer–Meshkov instability experiments with strong radiatively driven shocks,” Phys. Plasmas 4, 4347 (1997).10.1063/1.872597
    [8]
    G. Dimonte and B. Remington, “Richtmyer-Meshkov experiments on the Nova laser at high compression,” Phys. Rev. Lett. 70, 1806 (1993).10.1103/physrevlett.70.1806
    [9]
    G. Dimonte, C. E. Frerking, M. Schneider, and B. Remington, “Richtmyer–Meshkov instability with strong radiatively driven shocks,” Phys. Plasmas 3, 614 (1996).10.1063/1.871889
    [10]
    L. Welser-Sherrill, J. Fincke, F. Doss, E. Loomis, K. Flippo et al., “Two laser-driven mix experiments to study reshock and shear,” High Energy Density Phys. 9, 496 (2013).10.1016/j.hedp.2013.04.015
    [11]
    K. Parker, C. J. Horsfield, S. D. Rothman, S. H. Batha, M. M. Balkey et al., “Observation and simulation of plasma mix after reshock in a convergent geometry,” Phys. Plasmas 11, 2696 (2004).10.1063/1.1647131
    [12]
    P. Wang, K. S. Raman, S. A. MacLaren, C. M. Huntington, S. R. Nagel et al., “Three-dimensional design simulations of a high-energy density reshock experiment at the national ignition facility,” J. Fluids Eng. 140, 041207 (2018).10.1115/1.4038532
    [13]
    T. R. Desjardins, C. A. Di Stefanob, T. Day, D. Schmidt, E. C. Merritt et al., “A platform for thin-layer Richtmyer-Meshkov at OMEGA and the NIF,” High Energy Density Phys. 33, 100705 (2019).10.1016/j.hedp.2019.100705
    [14]
    S. R. Nagel, K. S. Raman, C. M. Huntington, S. A. MacLaren, P. Wang et al., “Experiments on the single-mode Richtmyer–Meshkov instability with reshock at high energy densities,” Phys. Plasmas 29, 032308 (2022).10.1063/5.0073621
    [15]
    B. M. Haines, F. F. Grinstein, L. Welser-Sherrill, and J. R. Fincke, “Simulations of material mixing in laser-driven reshock experiments,” Phys. Plasmas 20, 022309 (2013).10.1063/1.4793443
    [16]
    O. Schilling, M. Latini, and W. S. Don, “Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability,” Phys. Rev. E 76, 026319 (2007).10.1103/physreve.76.026319
    [17]
    Y. Aglitskiy, N. Metzler, M. Karasik, V. Serlin, A. L. Velikovich et al., “Perturbation evolution started by Richtmyer-Meshkov instability in planar laser targets,” Phys. Plasmas 13, 080703 (2006).10.1063/1.2227272
    [18]
    S. R. Nagel, K. S. Raman, C. M. Huntington, S. A. MacLaren, P. Wang et al., “A platform for studying the Rayleigh–Taylor and Richtmyer–Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility,” Phys. Plasmas 24, 072704 (2017).10.1063/1.4985312
    [19]
    J. P. Sauppe, S. Palaniyappan, E. N. Loomis, J. L. Kline, K. A. Flippo et al., “Using cylindrical implosions to investigate hydrodynamic instabilities in convergent geometry,” Matter Radiat. Extremes 4, 065403 (2019).10.1063/1.5090999
    [20]
    X. T. He and W. Y. Zhang, “Inertial fusion research in China,” Eur. Phys. J. D 44, 227 (2007).10.1140/epjd/e2007-00005-1
    [21]
    D. Yuan, J. Wu, Y. Li, X. Lu, J. Zhong et al., “Modeling supersonic-jet deflection in the Herbig–Haro 110-270 system with high-power lasers,” Astrophys. J. 815, 46 (2015).10.1088/0004-637x/815/1/46
    [22]
    W. Y. Zhang, W. H. Ye, J. F. Wu, W. Y. Miao, Z. F. Fan et al., “Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion (in Chinese),” Sci. Sin-Phys Mech. Astron. 44, 1 (2014).10.1360/SSPMA2013-00039
    [23]
    N. A. Denissen, B. Rollin, J. M. Reisner, and M. J. Andrews, “The tilted rocket rig: A Rayleigh–Taylor test case for RANS Models,” J. Fluids Eng. 136, 091301 (2014).10.1115/1.4027776
    [24]
    F. F. Grinstein, “Initial conditions and modeling for simulations of shock driven turbulent material mixing,” Comput. Fluids 151, 58 (2017).10.1016/j.compfluid.2016.11.003
    [25]
    I. W. Kokkinakis, D. Drikakis, and D. L. Youngs, “Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing,” Phys. Fluids 32, 074102 (2020).10.1063/5.0010559
    [26]
    I. W. Kokkinakis, D. Drikakis, D. L. Youngs, and R. J. R. Williams, “Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing,” Int. J. Heat Fluid Flow 56, 233 (2015).10.1016/j.ijheatfluidflow.2015.07.017
    [27]
    M. Hahn, D. Drikakis, D. L. Youngs, and R. J. R. Williams, “Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow,” Phys. Fluids 23, 046101 (2011).10.1063/1.3576187
    [28]
    Z. Li, X. Jiang, S. Liu, T. Huang, J. Zheng et al., “A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV,” Rev. Sci. Instrum. 81, 073504 (2010).10.1063/1.3460269
    [29]
    J. Nilsen, A. L. Kritcher, M. E. Martin, R. E. Tipton, H. D. Whitley et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018401 (2020).10.1063/1.5131748
    [30]
    T. R. Desjardins, C. A. D. Stefano, E. C. Merritt, K. A. Flippo, and F. W. Doss, “Reducing direct drive preheat with dopants,” High Energy Density Phys. 39, 100937 (2021).10.1016/j.hedp.2021.100937
    [31]
    C. Zhang, H. Liu, X. Duan, Y. Liu, H. Zhang et al., “Study of M-band X-ray preheating effect on shock propagation via streaked optical pyrometer system at SG-III prototype lasers,” Phys. Plasmas 26, 012708 (2019).10.1063/1.5054990
    [32]
    B. A. Remington, R. E. Rudd, and J. S. Wark, “From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation,” Phys. Plasmas 22, 090501 (2015).10.1063/1.4930134
    [33]
    W. Liu, X. Duan, S. Jiang, Z. Wang, L. Sun et al., “Laser-driven shock compression of gold foam in the terapascal pressure range,” Phys. Plasmas 25, 062707 (2018).10.1063/1.5026623
    [34]
    G. N. Hall, C. M. Krauland, M. S. Schollmeier, G. E. Kemp, J. G. Buscho et al., “The crystal backlighter imager: A spherically bent crystal imager for radiography on the National Ignition Facility,” Rev. Sci. Instrum. 90, 013702 (2019).10.1063/1.5058700
    [35]
    A. Do, A. M. Angulo, S. R. Nagel, G. N. Hall, D. K. Bradley et al., “High spatial resolution and contrast radiography of hydrodynamic instabilities at the National Ignition Facility,” Phys. Plasmas 29, 080703 (2022).10.1063/5.0087214
    [36]
    M. L. Wong, J. R. Baltzer, D. Livescu, and S. K. Lele, “Analysis of second moments and their budgets for Richtmyer-Meshkov instability and variable-density turbulence induced by reshock,” Phys. Rev. Fluids 7, 044602 (2022).10.1103/physrevfluids.7.044602
    [37]
    S. Kurien, F. W. Doss, D. Livescu, and K. Flippo, “Extracting a mixing parameter from 2D radiographic imaging of variable-density turbulent flow,” Physica D 405, 132354 (2020).10.1016/j.physd.2020.132354
    [38]
    C. V. Stan, A. M. Saunders, M. P. Hill, T. Lockard, K. Mackay et al., “Radiographic areal density measurements on the OMEGA EP laser system,” Rev. Sci. Instrum. 92, 053901 (2021).10.1063/5.0043512
    [39]
    H. Shiraga, N. Mahigashi, T. Yamada, S. Fujioka, T. Sakaiya et al., “Streaked x-ray backlighting with twin-slit imager for study of density profile and trajectory of low-density foam target filled with deuterium liquid,” Rev. Sci. Instrum. 79, 10E916 (2008).10.1063/1.2966458
    [40]
    B. M. Haines, F. F. Grinstein, and J. D. Schwarzkopf, “Reynolds-averaged Navier–Stokes initialization and benchmarking in shock-driven turbulent mixing,” J. Turbul. 14, 46 (2013).10.1080/14685248.2013.779380
    [41]
    S. Pellone, A. M. Rasmus, C. A. Di Stefano, E. C. Merritt, and F. W. Doss, “A method for examining ensemble averaging forms during the transition to turbulence in HED systems for application to RANS models,” Phys. Plasmas 31, 012304 (2024).10.1063/5.0180549
    [42]
    J. D. Bender, O. Schilling, K. S. Raman, R. A. Managan, B. J. Olson et al., “Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer,” J. Fluid Mech. 915, A84 (2021).10.1017/jfm.2020.1122
    [43]
    C. Q. Liu, H. K. Fu, and P. Lu, “New shock detector and improved control function for shock-boundary layer interaction,” Int. J. Numer. Anal. Model 9, 276 (2012).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (21) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return