Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 6
Nov.  2025
Turn off MathJax
Article Contents
He Qi-Guang, Wu Dun, Yu Yuying, Zhang Hang, Wu Qiang, Hu Jianbo. Generation of spherically converging shock wave based on shock wave lens[J]. Matter and Radiation at Extremes, 2025, 10(6): 067602. doi: 10.1063/5.0281313
Citation: He Qi-Guang, Wu Dun, Yu Yuying, Zhang Hang, Wu Qiang, Hu Jianbo. Generation of spherically converging shock wave based on shock wave lens[J]. Matter and Radiation at Extremes, 2025, 10(6): 067602. doi: 10.1063/5.0281313

Generation of spherically converging shock wave based on shock wave lens

doi: 10.1063/5.0281313
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jianbo.hu@hotmail.com
  • Received Date: 2025-05-18
  • Accepted Date: 2025-09-19
  • Available Online: 2025-11-28
  • Publish Date: 2025-11-01
  • The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics. Effective methods for such manipulation, however, remain elusive owing to the wide spectrum and irreversible destructive nature of intense shock waves. This work proposes a novel approach for actively controlling intense shock waves in solids, inspired by the principles of optical and explosive lenses. Specifically, by designing a shock wave convex lens composed of a low-shock-impedance material embedded in a high-shock-impedance matrix, we prove the feasibility of transforming a planar shock into a spherically converging shock. This is based on oblique shock theory, according to which shock waves pass through an oblique interface and then undergo deflection. Both experimental and simulation results demonstrate that, as expected, the obtained local spherical shock wave has a wavefront that is nearly perfectly spherical and uniform in pressure. Thus, this work proves the possibility of generating spherical shock waves using plate-impact experiments and highlights the potential of further exploration of the manipulation of shock waves in solids. It also contributes an innovative perspective for both armor penetration technologies and shock wave mitigation strategies.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Qi-Guang He: Formal analysis (lead); Investigation (lead); Methodology (equal); Software (equal); Visualization (lead); Writing – original draft (equal). Dun Wu: Data curation (equal); Investigation (equal); Validation (equal); Writing – review & editing (equal). Yuying Yu: Funding acquisition (equal); Investigation (equal); Project administration (equal); Resources (equal); Writing – review & editing (equal). Hang Zhang: Investigation (equal); Writing – review & editing (equal). Qiang Wu: Funding acquisition (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal). Jianbo Hu: Conceptualization (lead); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Supervision (lead); Validation (equal); Visualization (equal); Writing – original draft (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71, 2022–2025 (1993).10.1103/physrevlett.71.2022
    [2]
    J. H. Oh, H. M. Seung, and Y. Y. Kim, “Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: Design and realization,” J. Sound Vib. 410, 169–186 (2017).10.1016/j.jsv.2017.08.027
    [3]
    A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107, 161902 (2015).10.1063/1.4934493
    [4]
    Y. Tian, Y. Shen, D. Rao, and W. Xu, “Metamaterial improved nonlinear ultrasonics for fatigue damage detection,” Smart Mater. Struct. 28, 075038 (2019).10.1088/1361-665x/ab2566
    [5]
    Q. Wu, H. Chen, H. Nassar, and G. Huang, “Non-reciprocal Rayleigh wave propagation in space–time modulated surface,” J. Mech. Phys. Solids 146, 104196 (2021).10.1016/j.jmps.2020.104196
    [6]
    Q. Lin, J. Zhou, H. pan, D. Xu, and G. Wen, “Numerical and experimental investigations on tunable low-frequency locally resonant metamaterials,” Acta Mech. Solida Sin. 34, 612–623 (2021).10.1007/s10338-021-00220-4
    [7]
    E. D. Nobrega, F. Gautier, A. Pelat, and J. M. C. Dos Santos, “Vibration band gaps for elastic metamaterial rods using wave finite element method,” Mech. Syst. Signal Process. 79, 192–202 (2016).10.1016/j.ymssp.2016.02.059
    [8]
    H. J. Lee, J. K. Lee, and Y. Y. Kim, “Elastic metamaterial-based impedance-varying phononic bandgap structures for bandpass filters,” J. Sound Vib. 353, 58–74 (2015).10.1016/j.jsv.2015.05.012
    [9]
    B. Assouar, B. Liang, Y. Wu, Y. Li, J. C. Cheng et al., “Acoustic metasurfaces,” Nat. Rev. Mater. 3, 460–472 (2018).10.1038/s41578-018-0061-4
    [10]
    Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang et al., “Locally resonant sonic materials,” Science 289, 1734–1736 (2000).10.1126/science.289.5485.1734
    [11]
    S. Ning, F. Yang, C. Luo, Z. Liu, and Z. Zhuang, “Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation,” Extreme Mech. Lett. 35, 100623 (2020).10.1016/j.eml.2019.100623
    [12]
    K. Li, P. Rizzo, and A. Bagheri, “A parametric study on the optimization of a metamaterial-based energy harvester,” Smart Mater. Struct. 24, 115019 (2015).10.1088/0964-1726/24/11/115019
    [13]
    A. Sukhovich, L. Jing, and J. H. Page, “Negative refraction and focusing of ultrasound in two-dimensional phononic crystals,” Phys. Rev. B 77, 014301 (2008).10.1103/physrevb.77.014301
    [14]
    R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5, 5510 (2014).10.1038/ncomms6510
    [15]
    L. Cao, Y. Xu, B. Assouar, and Z. Yang, “Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces,” Appl. Phys. Lett. 113, 183506 (2018).10.1063/1.5050671
    [16]
    S. Li, J. Xu, and J. Tang, “Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces,” Appl. Phys. Lett. 112, 021903 (2018).10.1063/1.5011675
    [17]
    Z. Li, X. Wang, Y. Hou, Y. Yu, G. Li et al., “Quantifying the partial ionization effect of gold in the transition region between condensed matter and warm dense matter,” Proc. Natl. Acad. Sci. 120, e2300066120 (2023).10.1073/pnas.2300066120
    [18]
    Z. Jiao, Z. Li, F. Wu, Q. Wang, X. Li et al., “Phase transition, twinning, and spall damage of NiTi shape memory alloys under shock loading,” Mater. Sci. Eng. A 869, 144775 (2023).10.1016/j.msea.2023.144775
    [19]
    Y. Wang, Q. Hou, X. Li, Z. Li, F. Wu et al., “Strain rate-dependent tensile response and deformation mechanism of laser powder bed fusion 316L stainless steel,” Mater. Sci. Eng.: A 893, 146124 (2024).10.1016/j.msea.2024.146124
    [20]
    H. He, Y. Li, Y. Liu, D. Shi, and H. Fan, “Vibration suppression and impact mitigation of locally resonant composite metamaterial columns,” Compos. Struct. 307, 116631 (2023).10.1016/j.compstruct.2022.116631
    [21]
    S. Gopalakrishnan and Y. Rajapakse, Blast Mitigation Strategies in Marine Composite and Sandwich Structures (Springer Singapore, 2018), pp. 357–375.
    [22]
    T. Li, X. Jin, Y. Li, and P. Yang, “Optimization of band gap of 1D elastic metamaterial under impact load by regulating stiffness,” Acta Mech. Solida Sin. 37, 148–154 (2024).10.1007/s10338-023-00451-7
    [23]
    X. R. Li, Z. G. Wang, G. H. Wang, and Y. W. Ma, “Bandgap calculation of shock-resistant metamaterials and evaluation of shockwave resistance,” J. Phys. Conf. Ser. 1507, 032009 (2020).10.1088/1742-6596/1507/3/032009
    [24]
    J. N. Fritz, A Simple Plane-Wave Explosive Lens (Los Alamos National Lab, 2000).
    [25]
    J. P. Lichthardt, B. C. Tappan, P. R. Bowden, M. W. Olinger, and D. L. McDonald, “A simple 3D printed plane wave explosive lens based on fritz parameters,” AIP Conf. Proc. 2272, 030018 (2020).10.1063/12.0000892
    [26]
    J. Loiseau, J. Huneault, O. E. Petel, S. Goroshin, D. L. Frost et al., “Development of multi-component explosive lenses for arbitrary phase velocity generation,” J. Phys. Conf. Ser. 500, 192010 (2014).10.1088/1742-6596/500/19/192010
    [27]
    J. L. Brown and G. Ravichandran, “Analysis of oblique shock waves in solids using shock polars,” Shock Waves 24, 403–413 (2014).10.1007/s00193-013-0484-1
    [28]
    E. Loomis and D. Swift, “Oblique shock waves incident on an interface between two materials for general equations of state,” J. Appl. Phys. 103, 023518 (2008).10.1063/1.2837045
    [29]
    D. J. Steinberg, S. G. Cochran, and M. W. Guinan, “A constitutive model for metals applicable at high-strain rate,” J. Appl. Phys. 51, 1498–1504 (1980).10.1063/1.327799
    [30]
    D. J. Steinberg and C. M. Lund, “A constitutive model for strain rates from 10−4 to 106 s−1,” J. Appl. Phys. 65, 1528–1533 (1989).10.1063/1.342968
    [31]
    S. Hai-Feng, L. Hai-Feng, Z. Guang-Cai, and Z. Yan-Hong, “Numerical simulation of wave propagation and phase transition of tin under shock-wave loading,” Chin. Phys. Lett. 26, 066401 (2009).10.1088/0256-307x/26/6/066401
    [32]
    J. T. Ma, Q. G. He, and X. W. Chen, “The simultaneous macroscopic and mesoscopic numerical simulation of metal spalling by using the fine-mesh finite element—smoothed particle hydrodynamics adaptive method,” Shock Waves 34, 569–589 (2024).10.1007/s00193-024-01195-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return