| Citation: | Zhang Chuanchao, Liao Wei, Jiang Xiaolong, Wang Haijun, Zeng Fa, Ni Wei, Li Ping, Jiang Xiaodong, Zhu Qihua. Spatially random polarization-smoothing optics by residual stress birefringence of fused silica for laser-driven inertial confinement fusion[J]. Matter and Radiation at Extremes, 2025, 10(5): 057402. doi: 10.1063/5.0277045 |
| [1] |
T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley et al., “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).10.1063/1.369702
|
| [2] |
R. L. Berger, E. Lefebvre, A. B. Langdon, J. E. Rothenberg, C. H. Still et al., “Stimulated Raman and Brillouin scattering of polarization-smoothed and temporally smoothed laser beams,” Phys. Plasmas 6, 1043–1047 (1999).10.1063/1.873713
|
| [3] |
C. Ruyer, P. Loiseau, G. Riazuelo, R. Riquier, A. Debayle et al., “Accounting for speckle-scale beam bending in classical ray tracing schemes for propagating realistic pulses in indirect drive ignition conditions,” Matter Radiat. Extremes 8, 025901 (2023).10.1063/5.0124360
|
| [4] |
H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata et al., “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
|
| [5] |
L. Hao, J. Qiu, and W. Y. Huo, “Generation of high intensity speckles in overlapping laser beams,” Matter Radiat. Extremes 8, 025903 (2023).10.1063/5.0123585
|
| [6] |
J. Qiu, L. Hao, L. Cao, and S. Zou, “Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave,” Matter Radiat. Extremes 6, 065903 (2021).10.1063/5.0062902
|
| [7] |
X. Jia, Q. Jia, R. Yan, and J. Zheng, “Suppressing stimulated Raman side-scattering with vector light,” Matter Radiat. Extremes 8, 055603 (2023).10.1063/5.0157811
|
| [8] |
J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol et al., “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).10.1103/physrevlett.86.2810
|
| [9] |
D. H. Froula, L. Divol, R. L. Berger, R. A. London, N. B. Meezan et al., “Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas,” Phys. Rev. Lett. 101, 115002 (2008).10.1103/physrevlett.101.115002
|
| [10] |
J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).10.1063/1.372395
|
| [11] |
K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno et al., “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).10.1016/0030-4018(92)90091-5
|
| [12] |
D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004).10.1364/ao.43.006639
|
| [13] |
X. Huang, H. Jia, W. Zhou, F. Zhang, H. Guo et al., “Experimental demonstration of polarization smoothing in a convergent beam,” Appl. Opt. 54, 9786–9790 (2015).10.1364/ao.54.009786
|
| [14] |
B. Liu, X. Sun, H. Wang, Q. Yuan, M. Tian et al., “Polarization smoothing based on full poincaré beams modulated by stress-engineered optics,” Opt. Express 32, 11491–11508 (2024).10.1364/oe.517542
|
| [15] |
C. Zhang, Q. Chen, W. Liao, R. Dai, L. Zhang et al., “Analysis of residual stress fields from fictive temperature distributions within heat-affected zones of fused silica,” Opt. Express 29, 42511–42522 (2021).10.1364/oe.442031
|