| Citation: | Liu Yuxin, Lou Hongbo, Zhang Fei, Zeng Zhidan, Zeng Qiaoshi. Short-range order in binary and multiple principal element alloys: A review[J]. Matter and Radiation at Extremes, 2025, 10(4): 043801. doi: 10.1063/5.0275123 |
| [1] |
N. Rasooli, W. Chen, and M. Daly, “Deformation mechanisms in high entropy alloys: A minireview of short-range order effects,” Nanoscale 16, 1650–1663 (2024).10.1039/d3nr05251f
|
| [2] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia et al., “Short-range order and its impact on the CrCoNi medium-entropy alloy,” Nature 581, 283–287 (2020).10.1038/s41586-020-2275-z
|
| [3] |
L. Wang, J. Ding, S. Chen, K. Jin, Q. Zhang et al., “Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys,” Nat. Mater. 22, 950–957 (2023).10.1038/s41563-023-01517-0
|
| [4] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen et al., “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature 574, 223–227 (2019).10.1038/s41586-019-1617-1
|
| [5] |
Q. F. He, J. G. Wang, H. A. Chen, Z. Y. Ding, Z. Q. Zhou et al., “A highly distorted ultraelastic chemically complex Elinvar alloy,” Nature 602, 251–257 (2022).10.1038/s41586-021-04309-1
|
| [6] |
A. Manzoor, S. Pandey, D. Chakraborty, S. R. Phillpot, and D. S. Aidhy, “Entropy contributions to phase stability in binary random solid solutions,” npj Comput. Mater. 4, 47 (2018).10.1038/s41524-018-0102-y
|
| [7] |
F. Otto, Y. Yang, H. Bei, and E. P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys,” Acta Mater. 61, 2628–2638 (2013).10.1016/j.actamat.2013.01.042
|
| [8] |
B. Zhang, J. Ding, and E. Ma, “Chemical short-range order in body-centered-cubic TiZrHfNb high-entropy alloys,” Appl. Phys. Lett. 119, 201908 (2021).10.1063/5.0069417
|
| [9] |
Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen et al., “Short-range ordering and its effects on mechanical properties of high-entropy alloys,” J. Mater. Sci. Technol. 62, 214–220 (2021).10.1016/j.jmst.2020.06.018
|
| [10] |
L. Liu, Y. Zhang, J. Han, X. Wang, W. Jiang et al., “Nanoprecipitate-strengthened high-entropy alloys,” Adv. Sci. 8, 2100870 (2021).10.1002/advs.202100870
|
| [11] |
K. Xun, B. Zhang, Q. Wang, Z. Zhang, J. Ding et al., “Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys,” J. Mater. Sci. Technol. 135, 221–230 (2023).10.1016/j.jmst.2022.06.047
|
| [12] |
H. Li, H. Zong, S. Li, S. Jin, Y. Chen et al., “Uniting tensile ductility with ultrahigh strength via composition undulation,” Nature 604, 273–279 (2022).10.1038/s41586-022-04459-w
|
| [13] |
S. Chen, Z. H. Aitken, S. Pattamatta, Z. Wu, Z. G. Yu et al., “Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering,” Nat. Commun. 12, 4953 (2021).10.1038/s41467-021-25264-5
|
| [14] |
Q.-J. Li, H. Sheng, and E. Ma, “Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways,” Nat. Commun. 10, 3563 (2019).10.1038/s41467-019-11464-7
|
| [15] |
F. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa et al., “Local structure and short-range order in a NiCoCr solid solution alloy,” Phys. Rev. Lett. 118, 205501 (2017).10.1103/physrevlett.118.205501
|
| [16] |
B. Yin, S. Yoshida, N. Tsuji, and W. A. Curtin, “Yield strength and misfit volumes of NiCoCr and implications for short-range-order,” Nat. Commun. 11, 2507 (2020).10.1038/s41467-020-16083-1
|
| [17] |
F. G. Coury, C. Miller, R. Field, and M. Kaufman, “On the origin of diffuse intensities in fcc electron diffraction patterns,” Nature 622, 742–747 (2023).10.1038/s41586-023-06530-6
|
| [18] |
L. Li, Z. Chen, S. Kuroiwa, M. Ito, K. Yuge et al., “Evolution of short-range order and its effects on the plastic deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy alloy,” Acta Mater. 243, 118537 (2023).10.1016/j.actamat.2022.118537
|
| [19] |
L. Li, J.-P. Du, S. Ogata, and H. Inui, “Variation of first pop-in loads in nanoindentation to detect chemical short-range ordering in the equiatomic Cr-Co-Ni medium-entropy alloy,” Acta Mater. 269, 119775 (2024).10.1016/j.actamat.2024.119775
|
| [20] |
F. Walsh, M. Zhang, R. O. Ritchie, M. Asta, and A. M. Minor, “Multiple origins of extra electron diffractions in fcc metals,” Sci. Adv. 10, eadn9673 (2024).10.1126/sciadv.adn9673
|
| [21] |
F. Walsh, A. Abu-Odeh, and M. Asta, “Reconsidering short-range order in complex concentrated alloys,” MRS Bull. 48, 753–761 (2023).10.1557/s43577-023-00555-y
|
| [22] |
J. M. Cowley, “X-ray measurement of order in single crystals of Cu3Au,” J. Appl. Phys. 21, 24 (1950).10.1063/1.1699415
|
| [23] |
D. T. Keating and B. E. Warren, “Long-range order in beta-brass and Cu3Au,” J. Appl. Phys. 22, 286 (1951).10.1063/1.1699944
|
| [24] |
J. M. Cowley, “Short- and long-range order parameters in disordered solid solutions,” Phys. Rev. 120, 1648 (1960).10.1103/physrev.120.1648
|
| [25] |
C. Wolverton, V. Ozolins, and A. Zunger, “Short-range-order types in binary alloys: A reflection of coherent phase stability,” J. Phys. Condens. Matter 12, 2749 (2000).10.1088/0953-8984/12/12/314
|
| [26] |
J. Kanamori and Y. Kakehashi, “Conditions for the existence of ordered structure in binary alloy systems,” J. Phys., Colloq. 38, C7-274–C7-279 (1977).10.1051/jphyscol:1977754
|
| [27] |
A. V. Ceguerra, M. P. Moody, R. C. Powles, T. C. Petersen, R. K. W. Marceau et al., “Short-range order in multicomponent materials,” Acta Crystallogr., Sect. A:Found. Crystallogr. 68, 547–560 (2012).10.1107/s0108767312025706
|
| [28] |
R. K. W. Marceau, A. V. Ceguerra, A. J. Breen, D. Raabe, and S. P. Ringer, “Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe–Al,” Ultramicroscopy 157, 12–20 (2015).10.1016/j.ultramic.2015.05.001
|
| [29] |
M. He, W. J. Davids, A. J. Breen, and S. P. Ringer, “Quantifying short-range order using atom probe tomography,” Nat. Mater. 23, 1200–1207 (2024).10.1038/s41563-024-01912-1
|
| [30] |
F. Solal, R. Caudron, F. Ducastelle, A. Finel, and A. Loiseau, “Long-range order and short-range order in Pd3 V: Breakdown of the mean-field theory,” Phys. Rev. Lett. 58, 2245 (1987).10.1103/physrevlett.58.2245
|
| [31] |
Z. W. Lu and A. Zunger, “Unequal wave vectors in short- versus long-range ordering in intermetallic compounds,” Phys. Rev. B 50, 6626 (1994).10.1103/physrevb.50.6626
|
| [32] |
F. Solal, R. Caudron, and A. Finel, “In situ diffuse neutron scattering on disordered Pd3V and Ni3V,” Physica B 156–157, 75–77 (1989).10.1016/0921-4526(89)90591-7
|
| [33] |
C. Wolverton and A. Zunger, “First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys,” Phys. Rev. B 52, 8813 (1995).10.1103/physrevb.52.8813
|
| [34] |
C. Wolverton, V. Ozoliņš, and A. Zunger, “First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au,” Phys. Rev. B 57, 4332 (1998).10.1103/physrevb.57.4332
|
| [35] |
C. Wolverton and A. Zunger, “Ising-like description of structurally relaxed ordered and disordered alloys,” Phys. Rev. Lett. 75, 3162 (1995).10.1103/physrevlett.75.3162
|
| [36] |
B. Schönfeld, M. Portmann, S. Yu, and G. Kostorz, “The type of order in Cu–10 at.% Au—evidence from the diffuse scattering of X-rays,” Acta Mater. 47, 1413–1416 (1999).10.1016/S1359-6454(99)00035-X
|
| [37] |
V. Ozoliņš, C. Wolverton, and A. Zunger, “Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures,” Phys. Rev. B 57, 6427 (1998).10.1103/physrevb.57.6427
|
| [38] |
B. Schönfeld, “Local atomic arrangements in binary alloys,” Prog. Mater. Sci. 44, 435–543 (1999).10.1016/S0079-6425(99)00005-5
|
| [39] |
L. R. Owen, H. Y. Playford, H. J. Stone, and M. G. Tucker, “Analysis of short-range order in Cu3Au using X-ray pair distribution functions,” Acta Mater. 125, 15–26 (2017).10.1016/j.actamat.2016.11.048
|
| [40] |
L. R. Owen, H. Y. Playford, H. J. Stone, and M. G. Tucker, “A new approach to the analysis of short-range order in alloys using total scattering,” Acta Mater. 115, 155–166 (2016).10.1016/j.actamat.2016.05.031
|
| [41] |
R. Feder, M. Mooney, and A. S. Nowick, “Ordering kinetics in long-range ordered Cu3Au,” Acta Metall. 6, 266–277 (1958).10.1016/0001-6160(58)90146-9
|
| [42] |
T. Hashimoto, K. Nishimura, and Y. Takeuchi, “Dynamics on transitional ordering process in Cu3Au alloy from disordered state to ordered state,” J. Phys. Soc. Jpn. 45, 1127–1135 (1978).10.1143/jpsj.45.1127
|
| [43] |
P. Bardhan and J. B. Cohen, “A structural study of the alloy Cu3Au above its critical temperature,” Acta Crystallogr., Sect. A:Found. Crystallogr. 32, 597–614 (1976).10.1107/s0567739476001277
|
| [44] |
V. P. Bacurau, P. A. F. P. Moreira, G. Bertoli, A. F. Andreoli, E. Mazzer et al., “Comprehensive analysis of ordering in CoCrNi and CrNi2 alloys,” Nat. Commun. 15, 7815 (2024).10.1038/s41467-024-52018-w
|
| [45] |
A. Marucco, “Atomic ordering and α′-Cr phase precipitation in long-term aged Ni3Cr and Ni2Cr alloys,” J. Mater. Sci. 30, 4188–4194 (1995).10.1007/bf00360729
|
| [46] |
R. K. W. Marceau, A. V. Ceguerra, A. J. Breen, M. Palm, F. Stein et al., “Atom probe tomography investigation of heterogeneous short-range ordering in the ‘komplex’ phase state (K-state) of Fe–18Al (at.%),” Intermetallics 64, 23–31 (2015).10.1016/j.intermet.2015.04.005
|
| [47] |
N. V. Ershov, Y. P. Chernenkov, V. A. Lukshina, and O. P. Smirnov, “Short-range order in α-FeAl soft magnetic alloy,” Phys. Solid State 60, 1661–1673 (2018).10.1134/s106378341809010x
|
| [48] |
V. Pierron-Bohnes, S. Lefebvre, M. Bessiere, and A. Finel, “Short range order in a single crystal of Fe-19.5 at.% Al in the ferromagnetic range measured through X-ray diffuse scattering,” Acta Metall. Mater. 38, 2701–2710 (1990).10.1016/0956-7151(90)90284-n
|
| [49] |
I. Mirebeau, M. Hennion, and G. Parette, “First measurement of short-range-order inversion as a function of concentration in a transition alloy,” Phys. Rev. Lett. 53, 687 (1984).10.1103/physrevlett.53.687
|
| [50] |
S. M. Dubiel and J. Zukrowski, “Phase-decomposition-related short-range ordering in an Fe–Cr alloy,” Acta Mater. 61, 6207–6212 (2013).10.1016/j.actamat.2013.07.003
|
| [51] |
M. Liu, A. Aiello, Y. Xie, and K. Sieradzki, “The effect of short-range order on passivation of Fe-Cr alloys,” J. Electrochem. Soc. 165, C830 (2018).10.1149/2.0871811jes
|
| [52] |
I. Mirebeau and G. Parette, “Neutron study of the short range order inversion in Fe1−xCrx,” Phys. Rev. B 82, 104203 (2010).10.1103/physrevb.82.104203
|
| [53] |
S. M. Dubiel and J. Cieslak, “Short-range order in iron-rich Fe-Cr alloys as revealed by Mössbauer spectroscopy,” Phys. Rev. B 83, 180202 (2011).10.1103/physrevb.83.180202
|
| [54] |
E. P. Yelsukov, E. V. Voronina, and V. A. Barinov, “Mössbauer study of magnetic properties formation in disordered Fe-Al alloys,” J. Magn. Magn Mater. 115, 271–280 (1992).10.1016/0304-8853(92)90069-z
|
| [55] |
S. C. Moss, “X-ray measurement of short range order in Cu3Au,” J. Appl. Phys. 35, 3547–3553 (1964).10.1063/1.1713268
|
| [56] |
H. Reichert, S. C. Moss, and K. S. Liang, “Anomalous temperature dependence of the X-ray diffuse scattering intensity of Cu3Au,” Phys. Rev. Lett. 77, 4382 (1996).10.1103/physrevlett.77.4382
|
| [57] |
M. Bessière, S. Lefebvre, and Y. Calvayrac, “X-ray diffraction study of short-range order in a disordered Au3Cu alloy,” Struct. Sci. 39, 145–153 (1983).10.1107/S0108768183002207
|
| [58] |
S. Hashimoto and S. Ogawa, “Electron diffraction study on diffuse scattering from disordered Cu3Au alloy,” J. Phys. Soc. Jpn. 29, 710–721 (1970).10.1143/jpsj.29.710
|
| [59] |
S. C. Moss and R. H. Walker, “Screening singularities and Fermi surface effects in the diffuse scattering from alloys,” J. Appl. Crystallogr. 8, 96–107 (1975).10.1107/s0021889875009727
|
| [60] |
I. Tsatskis, “Non-mean-field theories of short range order and diffuse scattering anomalies in disordered alloys,” in Local Structure from Diffraction (Springer, 1998), pp. 207–231.
|
| [61] |
T. R. Welberry, Diffuse X-Ray Scattering and Models of Disorder (Oxford University Press, 2022).
|
| [62] |
M. Bessiere, E. Dartyge, and S. Lefebvre, “Study of short range order in Au3 Cu by EXAFS,” J. Phys., Colloq. 47, C8-1033–C8-1036 (1986).10.1051/jphyscol:19868199
|
| [63] |
T. K. Sham, A. Hiraya, and M. Watanabe, “Electronic structure of Cu-Au alloys from the Cu perspective: A Cu L3,2-edge study,” Phys. Rev. B 55, 7585 (1997).10.1103/physrevb.55.7585
|
| [64] |
Y. A. Babanov, A. V. Ryazhkin, T. Miyanaga, T. Okazaki, A. F. Sidorenko et al., “Short range order in disordered Ni–Mn alloys by EXAFS,” Nucl. Instrum. Methods Phys. Res., Sect. A 448, 364–367 (2000).10.1016/s0168-9002(99)00713-5
|
| [65] |
A. I. Ismail and R. Haliq, “Influence of Cr-content on the local atomic structure of Fe–Cr alloy, a study using EXAFS,” Radiat. Phys. Chem. 208, 110869 (2023).10.1016/j.radphyschem.2023.110869
|
| [66] |
W. Schweika and H.-G. Haubold, “Neutron-scattering and Monte Carlo study of short-range order and atomic interaction in Ni0.89Cr0.11,” Phys. Rev. B 37, 9240 (1988).10.1103/physrevb.37.9240
|
| [67] |
N. Filippova, V. Shabashov, and A. Nikolaev, “Mossbauer study of irradiation-accelerated short-range ordering in binary Fe-Cr alloys,” Phys. Met. Metallogr. 90, 145–152 (2000).
|
| [68] |
H. Thomas, “Über widerstandslegierungen,” Z. Phys. 129, 219–232 (1951).10.1007/bf01333398
|
| [69] |
R. G. Davies, “An X-ray and dilatometric study of order and the ‘K-state’ in iron-aluminum alloys,” J. Phys. Chem. Solid. 24, 985–992 (1963).10.1016/0022-3697(63)90002-7
|
| [70] |
R. J. Taunt and B. Ralph, “Ordering and the K-effect in Ni2Cr,” Phys. Status Solidi A 29, 431–442 (1975).10.1002/pssa.2210290211
|
| [71] |
E. A. Starke, Jr., V. Gerold, and A. G. Guy, “An investigation of the k-effect in nickel-aluminum alloys,” Acta Metall. 13, 957–964 (1965).10.1016/0001-6160(65)90003-9
|
| [72] |
B. H. Rabin, W. D. Swank, and R. N. Wright, “Thermophysical properties of alloy 617 from 25 °C to 1000 °C,” Nucl. Eng. Des. 262, 72–80 (2013).10.1016/j.nucengdes.2013.03.048
|
| [73] |
H. J. Logie, J. Jackson, J. C. Anderson, and F. R. N. Nabarro, “Effect of plastic deformation on resistivity of gold-palladium alloys,” Acta Metall. 9, 707–713 (1961).10.1016/0001-6160(61)90100-6
|
| [74] |
E. Nagy and I. Nagy, “Ordering in alloy Cu3Au—I,” J. Phys. Chem. Solid. 23, 1605–1612 (1962).10.1016/0022-3697(62)90243-3
|
| [75] |
P. Wright and J. C. Goodchild, “Vacancy induced ordering in Cu3Au,” Proc. Phys. Soc. 79, 196 (1962).10.1088/0370-1328/79/1/324
|
| [76] |
M. C. Franzblau and R. B. Gordon, “The order-disorder transformation in Cu3Au at high pressure,” J. Appl. Phys. 38, 103–110 (1967).10.1063/1.1708937
|
| [77] |
B. Sprusil, V. Sima, B. Chalupa, and B. Smola, “Phase transformations in CuAu and Cu3Au: A comparison between calorimetric and resistometric measurements/Phasenumwandlungen in CuAu und Cu3Au: ein Vergleich zwischen kalorimetrischen und resistometrischen Messungen,” Int. J. Mater. Res. 84, 118–123 (1993).10.1515/ijmr-1993-840211
|
| [78] |
A. Benisek and E. Dachs, “The vibrational and configurational entropy of disordering in Cu3Au,” J. Alloys Compd. 632, 585–590 (2015).10.1016/j.jallcom.2014.12.215
|
| [79] |
A. Benisek, E. Dachs, and M. Grodzicki, “Vibrational entropy of disorder in Cu3Au with different degrees of short-range order,” Phys. Chem. Chem. Phys. 20, 19441–19446 (2018).10.1039/c8cp01656a
|
| [80] |
L. J. Nagel, L. Anthony, and B. Fultz, “Differences in vibrational entropy of disordered and ordered Cu3Au,” Philos. Mag. Lett. 72, 421–427 (1995).10.1080/09500839508242483
|
| [81] |
A. Marucco and B. Nath, “Effects of ordering on the properties of Ni-Cr alloys,” J. Mater. Sci. 23, 2107–2114 (1988).10.1007/bf01115776
|
| [82] |
M. Hirabayashi, M. Koiwa, K. Tanaka, T. Tadaki, T. Saburi et al., “An experimental study on the ordered alloy Ni2Cr,” Trans. Jpn. Inst. Metals 10, 365–371 (1969).10.2320/matertrans1960.10.365
|
| [83] |
N. R. Dudova and R. O. Kaibyshev,“Short-range ordering and mechanical properties of a Ni-20%Cr alloy,” J. Phys.: Conf. Ser. 240, 012081 (2010).10.1088/1742-6596/240/1/012081
|
| [84] |
P. Singh, A. V. Smirnov, and D. D. Johnson, “Atomic short-range order and incipient long-range order in high-entropy alloys,” Phys. Rev. B 91, 224204 (2015).10.1103/physrevb.91.224204
|
| [85] |
J. Tian, Y. Wu, T. Cao, J. Pang, X. Zhang et al., “Fast and diverse phase evolution in VCoNi medium entropy alloy,” Mater. Sci. Eng. A 860, 144277 (2022).10.1016/j.msea.2022.144277
|
| [86] |
T. H. Chou, W. P. Li, L. Y. Zhu, F. Zhu, X. C. Li et al., “Critical impacts of thermodynamic instability and short-range order on deformation mechanisms of VCoNi medium-entropy alloy,” Acta Mater. 277, 120190 (2024).10.1016/j.actamat.2024.120190
|
| [87] |
M. Vaidya, K. Guruvidyathri, and B. S. Murty, “Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys,” J. Alloys Compd. 774, 856–864 (2019).10.1016/j.jallcom.2018.09.342
|
| [88] |
H. Hamdi, H. R. Abedi, and Y. Zhang, “A review study on thermal stability of high entropy alloys: Normal/abnormal resistance of grain growth,” J. Alloys Compd. 960, 170826 (2023).10.1016/j.jallcom.2023.170826
|
| [89] |
D. Ma, M. Yao, K. G. Pradeep, C. C. Tasan, H. Springer et al., “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys,” Acta Mater. 98, 288–296 (2015).10.1016/j.actamat.2015.07.030
|
| [90] |
Y. Wu, Z. Li, H. Feng, and S. He, “Atomic interactions and order–disorder transition in FCC-type FeCoNiAl1−xTix high-entropy alloys,” Materials 15, 3992 (2022).10.3390/ma15113992
|
| [91] |
Y. Ma, J. Fan, L. Zhang, M. Zhang, P. Cui et al., “Pressure-induced ordering phase transition in high-entropy alloy,” Intermetallics 103, 63–66 (2018).10.1016/j.intermet.2018.10.003
|
| [92] |
F. Zhang, H. Lou, B. Cheng, Z. Zeng, and Q. Zeng, “High-pressure induced phase transitions in high-entropy alloys: A review,” Entropy 21, 239 (2019).10.3390/e21030239
|
| [93] |
S. Zhu, D. Yan, Y. Zhang, L. Han, D. Raabe et al., “Strong and ductile Resinvar alloys with temperature- and time-independent resistivity,” Nat. Commun. 15, 7199 (2024).10.1038/s41467-024-51572-7
|
| [94] |
M. E. Bloomfield, K. A. Christofidou, P. M. Mignanelli, A.-P. M. Reponen, H. J. Stone et al., “Phase stability of the AlxCrFeCoNi alloy system,” J. Alloys Compd. 926, 166734 (2022).10.1016/j.jallcom.2022.166734
|
| [95] |
C. Li, M. Zhao, J. C. Li, and Q. Jiang, “B2 structure of high-entropy alloys with addition of Al,” J. Appl. Phys. 104, 113504 (2008).10.1063/1.3032900
|
| [96] |
Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong et al., “The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys,” Metals 7, 57 (2017).10.3390/met7020057
|
| [97] |
J. Ding, Q. Yu, M. Asta, and R. O. Ritchie, “Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys,” Proc. Natl. Acad. Sci. U. S. A. 115, 8919–8924 (2018).10.1073/pnas.1808660115
|
| [98] |
Y. Zhang, Y. N. Osetsky, and W. J. Weber, “Tunable chemical disorder in concentrated alloys: Defect physics and radiation performance,” Chem. Rev. 122, 789–829 (2021).10.1021/acs.chemrev.1c00387
|
| [99] |
X. D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita et al., “Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy,” Acta Mater. 84, 145–152 (2015).10.1016/j.actamat.2014.10.033
|
| [100] |
A. Fantin, G. O. Lepore, A. M. Manzoni, S. Kasatikov, T. Scherb et al., “Short-range chemical order and local lattice distortion in a compositionally complex alloy,” Acta Mater. 193, 329–337 (2020).10.1016/j.actamat.2020.04.034
|
| [101] |
Y. Tong, S. Zhao, H. Bei, T. Egami, Y. Zhang et al., “Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys,” Acta Mater. 183, 172–181 (2020).10.1016/j.actamat.2019.11.026
|
| [102] |
F. Körmann, A. V. Ruban, and M. H. Sluiter, “Long-ranged interactions in bcc NbMoTaW high-entropy alloys,” Mater. Res. Lett. 5, 35–40 (2017).10.1080/21663831.2016.1198837
|
| [103] |
F. Walsh, M. Asta, and R. O. Ritchie, “Magnetically driven short-range order can explain anomalous measurements in CrCoNi,” Proc. Natl. Acad. Sci. U. S. A. 118, e2020540118 (2021).10.1073/pnas.2020540118
|
| [104] |
C. D. Woodgate, D. Hedlund, L. H. Lewis, and J. B. Staunton, “Interplay between magnetism and short-range order in medium- and high-entropy alloys: CrCoNi, CrFeCoNi, and CrMnFeCoNi,” Phys. Rev. Mater. 7, 053801 (2023).10.1103/physrevmaterials.7.053801
|
| [105] |
C. Niu, A. J. Zaddach, A. A. Oni, X. Sang, J. W. Hurt III et al., “Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo,” Appl. Phys. Lett. 106, 161906 (2015).10.1063/1.4918996
|
| [106] |
C. Niu, C. R. LaRosa, J. Miao, M. J. Mills, and M. Ghazisaeidi, “Magnetically-driven phase transformation strengthening in high entropy alloys,” Nat. Commun. 9, 1363 (2018).10.1038/s41467-018-03846-0
|
| [107] |
T. Teramoto, K. Kitasumi, R. Shimohara, Y. Ito, R. Shimizu et al., “Formation condition and effect on the early stages of plastic deformation of chemical short-range order in Cr-Co-Ni medium-entropy alloy,” J. Alloys Compd. 941, 169016 (2023).10.1016/j.jallcom.2023.169016
|
| [108] |
H. Tanimoto, R. Hozumi, and M. Kawamura, “Electrical resistivity and short-range order in rapid-quenched CrMnFeCoNi high-entropy alloy,” J. Alloys Compd. 896, 163059 (2022).10.1016/j.jallcom.2021.163059
|
| [109] |
K. Inoue, S. Yoshida, and N. Tsuji, “Direct observation of local chemical ordering in a few nanometer range in CoCrNi medium-entropy alloy by atom probe tomography and its impact on mechanical properties,” Phys. Rev. Mater. 5, 085007 (2021).10.1103/physrevmaterials.5.085007
|
| [110] |
M. Zhang, Q. Yu, C. Frey, F. Walsh, M. I. Payne et al., “Determination of peak ordering in the CrCoNi medium-entropy alloy via nanoindentation,” Acta Mater. 241, 118380 (2022).10.1016/j.actamat.2022.118380
|
| [111] |
L. Zhou, Q. Wang, J. Wang, X. Chen, P. Jiang et al., “Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy,” Acta Mater. 224, 117490 (2022).10.1016/j.actamat.2021.117490
|
| [112] |
Y. Han, H. Chen, Y. Sun, J. Liu, S. Wei et al., “Ubiquitous short-range order in multi-principal element alloys,” Nat. Commun. 15, 6486 (2024).10.1038/s41467-024-49606-1
|
| [113] |
E. Antillon, C. Woodward, S. I. Rao, B. Akdim, and T. A. Parthasarathy, “Chemical short range order strengthening in a model FCC high entropy alloy,” Acta Mater. 190, 29–42 (2020).10.1016/j.actamat.2020.02.041
|
| [114] |
D. V. Louzguine-Luzgin and J. Jiang, “On long-term stability of metallic glasses,” Metals 9, 1076 (2019).10.3390/met9101076
|
| [115] |
Y. Zhao, B. Shang, B. Zhang, X. Tong, H. Ke et al., “Ultrastable metallic glass by room temperature aging,” Sci. Adv. 8, eabn3623 (2022).10.1126/sciadv.abn3623
|
| [116] |
J. F. Radavich and A. Fort, “Effects of long-time exposure in alloy 625 at,” Superalloys 718, 635–647 (1994).
|
| [117] |
P. Meisterle and W. Pfeiler, “Resistometric study of SRO-kinetics in α-AgAl,” Acta Metall. 31, 1543–1547 (1983).10.1016/0001-6160(83)90151-7
|
| [118] |
A. Y. Volkov, A. E. Kostina, E. G. Volkova, O. S. Novikova, and B. D. Antonov, “Microstructure and physicomechanical properties of a Cu-8 at % Pd alloy,” Phys. Met. Metallogr. 118, 1236–1246 (2017).10.1134/s0031918x1712016x
|
| [119] |
R. G. Davies and R. W. Cahn, “Short range order in aluminium bronze,” Acta Metall. 10, 170–171 (1962).10.1016/0001-6160(62)90062-7
|
| [120] |
D. M. C. Nicholson and R. H. Brown, “Electrical resistivity of Ni0.8Mo0.2: Explanation of anomalous behavior in short-range ordered alloys,” Phys. Rev. Lett. 70, 3311 (1993).10.1103/physrevlett.70.3311
|
| [121] |
J. B. Seol, W.-S. Ko, S. S. Sohn, M. Y. Na, H. J. Chang et al., “Mechanically derived short-range order and its impact on the multi-principal-element alloys,” Nat. Commun. 13, 6766 (2022).10.1038/s41467-022-34470-8
|
| [122] |
J.-H. Ke, E. R. Reese, E. A. Marquis, G. R. Odette, and D. Morgan, “Flux effects in precipitation under irradiation – Simulation of Fe-Cr alloys,” Acta Mater. 164, 586–601 (2019).10.1016/j.actamat.2018.10.063
|
| [123] |
Y. Zhao, A. Bhattacharya, C. Pareige, C. Massey, P. Zhu et al., “Effect of heavy ion irradiation dose rate and temperature on α′ precipitation in high purity Fe-18%Cr alloy,” Acta Mater. 231, 117888 (2022).10.1016/j.actamat.2022.117888
|
| [124] |
M.-R. He, S. Wang, S. Shi, K. Jin, H. Bei et al., “Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys,” Acta Mater. 126, 182–193 (2017).10.1016/j.actamat.2016.12.046
|
| [125] |
Z. Su, T. Shi, H. Shen, L. Jiang, L. Wu et al., “Radiation-assisted chemical short-range order formation in high-entropy alloys,” Scr. Mater. 212, 114547 (2022).10.1016/j.scriptamat.2022.114547
|
| [126] |
Z. Zhang, Z. Su, B. Zhang, Q. Yu, J. Ding et al., “Effect of local chemical order on the irradiation-induced defect evolution in CrCoNi medium-entropy alloy,” Proc. Natl. Acad. Sci. U. S. A. 120, e2218673120 (2023).10.1073/pnas.2218673120
|
| [127] |
Y. Zhou, T. Shi, J. Li, L. Wu, Q. Peng et al., “Element-dependent evolution of chemical short-range ordering tendency of NiCoFeCrMn under irradiation,” Int. J. Plast. 171, 103768 (2023).10.1016/j.ijplas.2023.103768
|
| [128] |
P. Cao, “How does short-range order impact defect kinetics in irradiated multiprincipal element alloys?,” Acc. Mater. Res. 2, 71–74 (2021).10.1021/accountsmr.0c00102
|
| [129] |
B. Schönfeld, C. R. Sax, J. Zemp, M. Engelke, P. Boesecke et al., “Local order in Cr-Fe-Co-Ni: Experiment and electronic structure calculations,” Phys. Rev. B 99, 014206 (2019).10.1103/physrevb.99.014206
|
| [130] |
H. Joress, B. Ravel, E. Anber, J. Hollenbach, D. Sur et al., “Why is EXAFS for complex concentrated alloys so hard? Challenges and opportunities for measuring ordering with X-ray absorption spectroscopy,” Matter 6, 3763–3781 (2023).10.1016/j.matt.2023.09.010
|
| [131] |
S. Calvin, XAFS for Everyone (CRC Press, 2024).
|
| [132] |
F. Zhang, Y. Tong, K. Jin, H. Bei, W. J. Weber et al., “Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy,” Mater. Res. Lett. 6, 450–455 (2018).10.1080/21663831.2018.1478332
|
| [133] |
L. R. Owen, E. J. Pickering, H. Y. Playford, H. J. Stone, M. G. Tucker et al., “An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy,” Acta Mater. 122, 11–18 (2017).10.1016/j.actamat.2016.09.032
|
| [134] |
Q. F. He, P. H. Tang, H. A. Chen, S. Lan, J. G. Wang et al., “Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys,” Acta Mater. 216, 117140 (2021).10.1016/j.actamat.2021.117140
|
| [135] |
S. D. Wang, X. J. Liu, Z. F. Lei, D. Y. Lin, F. G. Bian et al., “Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys,” Phys. Rev. B 103, 104107 (2021).10.1103/physrevb.103.104107
|
| [136] |
S. Ghosh, K. Ueltzen, J. George, J. Neugebauer, and F. Körmann, “Chemical ordering and magnetism in face-centered cubic CrCoNi alloy,” npj Comput. Mater. 10, 284 (2024).10.1038/s41524-024-01439-8
|
| [137] |
D. Billington, A. D. N. James, E. I. Harris-Lee, D. A. Lagos, D. O’Neill et al., “Bulk and element-specific magnetism of medium-entropy and high-entropy Cantor-Wu alloys,” Phys. Rev. B 102, 174405 (2020).10.1103/physrevb.102.174405
|
| [138] |
A. Smekhova, A. Kuzmin, K. Siemensmeyer, C. Luo, J. Taylor et al., “Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale,” Nano Res. 16, 5626–5639 (2023).10.1007/s12274-022-5135-3
|
| [139] |
L. Zhu, H. He, M. Naeem, X. Sun, J. Qi et al., “Antiferromagnetism and phase stability of CrMnFeCoNi high-entropy alloy,” Phys. Rev. Lett. 133, 126701 (2024).10.1103/physrevlett.133.126701
|
| [140] |
T. A. Elmslie, J. Startt, S. Soto-Medina, Y. Yang, K. Feng et al., “Magnetic properties of equiatomic CrMnFeCoNi,” Phys. Rev. B 106, 014418 (2022).10.1103/physrevb.106.014418
|
| [141] |
Ö. Özgün, D. Koch, A. Çakır, T. Tavşanoğlu, W. Donner et al., “Magnetic properties of fcc and σ phases in equiatomic and off-equiatomic high-entropy Cantor alloys,” Phys. Rev. B 106, 214422 (2022).10.1103/physrevb.106.214422
|
| [142] |
K. Jin, B. C. Sales, G. M. Stocks, G. D. Samolyuk, M. Daene et al., “Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity,” Sci. Rep. 6, 20159 (2016).10.1038/srep20159
|
| [143] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang et al., “Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes,” Nature 563, 546–550 (2018).10.1038/s41586-018-0685-y
|
| [144] |
R. Zhang, S. Zhao, C. Ophus, Y. Deng, S. J. Vachhani et al., “Direct imaging of short-range order and its impact on deformation in Ti-6Al,” Sci. Adv. 5, eaax2799 (2019).10.1126/sciadv.aax2799
|
| [145] |
X. Chen, Q. Wang, Z. Cheng, M. Zhu, H. Zhou et al., “Direct observation of chemical short-range order in a medium-entropy alloy,” Nature 592, 712–716 (2021).10.1038/s41586-021-03428-z
|
| [146] |
H.-W. Hsiao, R. Feng, H. Ni, K. An, J. D. Poplawsky et al., “Data-driven electron-diffraction approach reveals local short-range ordering in CrCoNi with ordering effects,” Nat. Commun. 13, 6651 (2022).10.1038/s41467-022-34335-0
|
| [147] |
X. Chen, F. Yuan, H. Zhou, and X. Wu, “Structure motif of chemical short-range order in a medium-entropy alloy,” Mater. Res. Lett. 10, 149–155 (2022).10.1080/21663831.2022.2029607
|
| [148] |
S. Moniri, Y. Yang, J. Ding, Y. Yuan, J. Zhou et al., “Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys,” Nature 624, 564–569 (2023).10.1038/s41586-023-06785-z
|
| [149] |
Y. Li, Y. Wei, Z. Wang, X. Liu, T. Colnaghi et al., “Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography,” Nat. Commun. 14, 7410 (2023).10.1038/s41467-023-43314-y
|
| [150] |
X. Sun, S. Lu, R. Xie, X. An, W. Li et al., “Can experiment determine the stacking fault energy of metastable alloys?,” Mater. Des. 199, 109396 (2021).10.1016/j.matdes.2020.109396
|
| [151] |
Z. Zhang, J. Kou, L. Chen, J. Guo, X. Duan et al., “From stacking fault to phase transformation: A quantitative model of plastic deformation of CoCrFeMnNi under different strain rates,” Intermetallics 146, 107585 (2022).10.1016/j.intermet.2022.107585
|
| [152] |
P. Wu, Y. Zhang, L. Han, K. Gan, D. Yan et al., “Unexpected sluggish martensitic transformation in a strong and super-ductile high-entropy alloy of ultralow stacking fault energy,” Acta Mater. 261, 119389 (2023).10.1016/j.actamat.2023.119389
|
| [153] |
F. Zhang, H. Lou, Y. Liu, Z. Zeng, X. Chen et al., “Compositional effect on pressure-induced polymorphism in high-entropy alloys,” Mater. Today Chem. 42, 102435 (2024).10.1016/j.mtchem.2024.102435
|
| [154] |
T. Pradell, D. Crespo, N. Clavaguera, and M. T. Clavaguera-Mora, “Diffusion controlled grain growth in primary crystallization: Avrami exponents revisited,” J. Phys. Condens. Matter 10, 3833 (1998).10.1088/0953-8984/10/17/014
|
| [155] |