Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
Liu Yuxin, Lou Hongbo, Zhang Fei, Zeng Zhidan, Zeng Qiaoshi. Short-range order in binary and multiple principal element alloys: A review[J]. Matter and Radiation at Extremes, 2025, 10(4): 043801. doi: 10.1063/5.0275123
Citation: Liu Yuxin, Lou Hongbo, Zhang Fei, Zeng Zhidan, Zeng Qiaoshi. Short-range order in binary and multiple principal element alloys: A review[J]. Matter and Radiation at Extremes, 2025, 10(4): 043801. doi: 10.1063/5.0275123

Short-range order in binary and multiple principal element alloys: A review

doi: 10.1063/5.0275123
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: zengqs@hpstar.ac.cn
  • Received Date: 2025-04-10
  • Accepted Date: 2025-05-28
  • Available Online: 2025-11-28
  • Publish Date: 2025-07-01
  • Multiple principal element alloys (MPEAs), also known as high-entropy alloys, have attracted significant attention because of their exceptional mechanical and thermal properties. A critical factor influencing these properties is suggested to be the presence of chemical short-range order (SRO), characterized by specific atomic arrangements occurring more frequently than in a random distribution. Despite extensive efforts to elucidate SRO, particularly in face-centered cubic (fcc) 3d transition metal-based MPEAs, several key aspects remain under debate: the conditions under which SRO forms, the reliability of characterization methods for detecting SRO, and its quantitative impact on mechanical performance. This review summarizes the challenges and unresolved issues in this emerging field, drawing comparisons with well-established research on SRO in binary alloys over the past few decades. Through this cross-system comparison, we aim to provide new insights into SRO from a comprehensive perspective.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Yuxin Liu: Investigation (equal); Validation (equal); Writing – original draft (lead); Writing – review & editing (equal). Hongbo Lou: Validation (equal); Writing – review & editing (equal). Fei Zhang: Validation (equal); Writing – review & editing (equal). Zhidan Zeng: Project administration (equal); Validation (equal); Writing – review & editing (equal). Qiaoshi Zeng: Conceptualization (lead); Funding acquisition (lead); Project administration (lead); Resources (lead); Supervision (lead); Validation (equal); Writing – review & editing (equal).
    Author Contributions
    Data sharing is not applicable to this article as no new data were created or analyzed in this study.
  • loading
  • [1]
    N. Rasooli, W. Chen, and M. Daly, “Deformation mechanisms in high entropy alloys: A minireview of short-range order effects,” Nanoscale 16, 1650–1663 (2024).10.1039/d3nr05251f
    [2]
    R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia et al., “Short-range order and its impact on the CrCoNi medium-entropy alloy,” Nature 581, 283–287 (2020).10.1038/s41586-020-2275-z
    [3]
    L. Wang, J. Ding, S. Chen, K. Jin, Q. Zhang et al., “Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys,” Nat. Mater. 22, 950–957 (2023).10.1038/s41563-023-01517-0
    [4]
    Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen et al., “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature 574, 223–227 (2019).10.1038/s41586-019-1617-1
    [5]
    Q. F. He, J. G. Wang, H. A. Chen, Z. Y. Ding, Z. Q. Zhou et al., “A highly distorted ultraelastic chemically complex Elinvar alloy,” Nature 602, 251–257 (2022).10.1038/s41586-021-04309-1
    [6]
    A. Manzoor, S. Pandey, D. Chakraborty, S. R. Phillpot, and D. S. Aidhy, “Entropy contributions to phase stability in binary random solid solutions,” npj Comput. Mater. 4, 47 (2018).10.1038/s41524-018-0102-y
    [7]
    F. Otto, Y. Yang, H. Bei, and E. P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys,” Acta Mater. 61, 2628–2638 (2013).10.1016/j.actamat.2013.01.042
    [8]
    B. Zhang, J. Ding, and E. Ma, “Chemical short-range order in body-centered-cubic TiZrHfNb high-entropy alloys,” Appl. Phys. Lett. 119, 201908 (2021).10.1063/5.0069417
    [9]
    Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen et al., “Short-range ordering and its effects on mechanical properties of high-entropy alloys,” J. Mater. Sci. Technol. 62, 214–220 (2021).10.1016/j.jmst.2020.06.018
    [10]
    L. Liu, Y. Zhang, J. Han, X. Wang, W. Jiang et al., “Nanoprecipitate-strengthened high-entropy alloys,” Adv. Sci. 8, 2100870 (2021).10.1002/advs.202100870
    [11]
    K. Xun, B. Zhang, Q. Wang, Z. Zhang, J. Ding et al., “Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys,” J. Mater. Sci. Technol. 135, 221–230 (2023).10.1016/j.jmst.2022.06.047
    [12]
    H. Li, H. Zong, S. Li, S. Jin, Y. Chen et al., “Uniting tensile ductility with ultrahigh strength via composition undulation,” Nature 604, 273–279 (2022).10.1038/s41586-022-04459-w
    [13]
    S. Chen, Z. H. Aitken, S. Pattamatta, Z. Wu, Z. G. Yu et al., “Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering,” Nat. Commun. 12, 4953 (2021).10.1038/s41467-021-25264-5
    [14]
    Q.-J. Li, H. Sheng, and E. Ma, “Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways,” Nat. Commun. 10, 3563 (2019).10.1038/s41467-019-11464-7
    [15]
    F. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa et al., “Local structure and short-range order in a NiCoCr solid solution alloy,” Phys. Rev. Lett. 118, 205501 (2017).10.1103/physrevlett.118.205501
    [16]
    B. Yin, S. Yoshida, N. Tsuji, and W. A. Curtin, “Yield strength and misfit volumes of NiCoCr and implications for short-range-order,” Nat. Commun. 11, 2507 (2020).10.1038/s41467-020-16083-1
    [17]
    F. G. Coury, C. Miller, R. Field, and M. Kaufman, “On the origin of diffuse intensities in fcc electron diffraction patterns,” Nature 622, 742–747 (2023).10.1038/s41586-023-06530-6
    [18]
    L. Li, Z. Chen, S. Kuroiwa, M. Ito, K. Yuge et al., “Evolution of short-range order and its effects on the plastic deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy alloy,” Acta Mater. 243, 118537 (2023).10.1016/j.actamat.2022.118537
    [19]
    L. Li, J.-P. Du, S. Ogata, and H. Inui, “Variation of first pop-in loads in nanoindentation to detect chemical short-range ordering in the equiatomic Cr-Co-Ni medium-entropy alloy,” Acta Mater. 269, 119775 (2024).10.1016/j.actamat.2024.119775
    [20]
    F. Walsh, M. Zhang, R. O. Ritchie, M. Asta, and A. M. Minor, “Multiple origins of extra electron diffractions in fcc metals,” Sci. Adv. 10, eadn9673 (2024).10.1126/sciadv.adn9673
    [21]
    F. Walsh, A. Abu-Odeh, and M. Asta, “Reconsidering short-range order in complex concentrated alloys,” MRS Bull. 48, 753–761 (2023).10.1557/s43577-023-00555-y
    [22]
    J. M. Cowley, “X-ray measurement of order in single crystals of Cu3Au,” J. Appl. Phys. 21, 24 (1950).10.1063/1.1699415
    [23]
    D. T. Keating and B. E. Warren, “Long-range order in beta-brass and Cu3Au,” J. Appl. Phys. 22, 286 (1951).10.1063/1.1699944
    [24]
    J. M. Cowley, “Short- and long-range order parameters in disordered solid solutions,” Phys. Rev. 120, 1648 (1960).10.1103/physrev.120.1648
    [25]
    C. Wolverton, V. Ozolins, and A. Zunger, “Short-range-order types in binary alloys: A reflection of coherent phase stability,” J. Phys. Condens. Matter 12, 2749 (2000).10.1088/0953-8984/12/12/314
    [26]
    J. Kanamori and Y. Kakehashi, “Conditions for the existence of ordered structure in binary alloy systems,” J. Phys., Colloq. 38, C7-274–C7-279 (1977).10.1051/jphyscol:1977754
    [27]
    A. V. Ceguerra, M. P. Moody, R. C. Powles, T. C. Petersen, R. K. W. Marceau et al., “Short-range order in multicomponent materials,” Acta Crystallogr., Sect. A:Found. Crystallogr. 68, 547–560 (2012).10.1107/s0108767312025706
    [28]
    R. K. W. Marceau, A. V. Ceguerra, A. J. Breen, D. Raabe, and S. P. Ringer, “Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe–Al,” Ultramicroscopy 157, 12–20 (2015).10.1016/j.ultramic.2015.05.001
    [29]
    M. He, W. J. Davids, A. J. Breen, and S. P. Ringer, “Quantifying short-range order using atom probe tomography,” Nat. Mater. 23, 1200–1207 (2024).10.1038/s41563-024-01912-1
    [30]
    F. Solal, R. Caudron, F. Ducastelle, A. Finel, and A. Loiseau, “Long-range order and short-range order in Pd3 V: Breakdown of the mean-field theory,” Phys. Rev. Lett. 58, 2245 (1987).10.1103/physrevlett.58.2245
    [31]
    Z. W. Lu and A. Zunger, “Unequal wave vectors in short- versus long-range ordering in intermetallic compounds,” Phys. Rev. B 50, 6626 (1994).10.1103/physrevb.50.6626
    [32]
    F. Solal, R. Caudron, and A. Finel, “In situ diffuse neutron scattering on disordered Pd3V and Ni3V,” Physica B 156–157, 75–77 (1989).10.1016/0921-4526(89)90591-7
    [33]
    C. Wolverton and A. Zunger, “First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys,” Phys. Rev. B 52, 8813 (1995).10.1103/physrevb.52.8813
    [34]
    C. Wolverton, V. Ozoliņš, and A. Zunger, “First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au,” Phys. Rev. B 57, 4332 (1998).10.1103/physrevb.57.4332
    [35]
    C. Wolverton and A. Zunger, “Ising-like description of structurally relaxed ordered and disordered alloys,” Phys. Rev. Lett. 75, 3162 (1995).10.1103/physrevlett.75.3162
    [36]
    B. Schönfeld, M. Portmann, S. Yu, and G. Kostorz, “The type of order in Cu–10 at.% Au—evidence from the diffuse scattering of X-rays,” Acta Mater. 47, 1413–1416 (1999).10.1016/S1359-6454(99)00035-X
    [37]
    V. Ozoliņš, C. Wolverton, and A. Zunger, “Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures,” Phys. Rev. B 57, 6427 (1998).10.1103/physrevb.57.6427
    [38]
    B. Schönfeld, “Local atomic arrangements in binary alloys,” Prog. Mater. Sci. 44, 435–543 (1999).10.1016/S0079-6425(99)00005-5
    [39]
    L. R. Owen, H. Y. Playford, H. J. Stone, and M. G. Tucker, “Analysis of short-range order in Cu3Au using X-ray pair distribution functions,” Acta Mater. 125, 15–26 (2017).10.1016/j.actamat.2016.11.048
    [40]
    L. R. Owen, H. Y. Playford, H. J. Stone, and M. G. Tucker, “A new approach to the analysis of short-range order in alloys using total scattering,” Acta Mater. 115, 155–166 (2016).10.1016/j.actamat.2016.05.031
    [41]
    R. Feder, M. Mooney, and A. S. Nowick, “Ordering kinetics in long-range ordered Cu3Au,” Acta Metall. 6, 266–277 (1958).10.1016/0001-6160(58)90146-9
    [42]
    T. Hashimoto, K. Nishimura, and Y. Takeuchi, “Dynamics on transitional ordering process in Cu3Au alloy from disordered state to ordered state,” J. Phys. Soc. Jpn. 45, 1127–1135 (1978).10.1143/jpsj.45.1127
    [43]
    P. Bardhan and J. B. Cohen, “A structural study of the alloy Cu3Au above its critical temperature,” Acta Crystallogr., Sect. A:Found. Crystallogr. 32, 597–614 (1976).10.1107/s0567739476001277
    [44]
    V. P. Bacurau, P. A. F. P. Moreira, G. Bertoli, A. F. Andreoli, E. Mazzer et al., “Comprehensive analysis of ordering in CoCrNi and CrNi2 alloys,” Nat. Commun. 15, 7815 (2024).10.1038/s41467-024-52018-w
    [45]
    A. Marucco, “Atomic ordering and α′-Cr phase precipitation in long-term aged Ni3Cr and Ni2Cr alloys,” J. Mater. Sci. 30, 4188–4194 (1995).10.1007/bf00360729
    [46]
    R. K. W. Marceau, A. V. Ceguerra, A. J. Breen, M. Palm, F. Stein et al., “Atom probe tomography investigation of heterogeneous short-range ordering in the ‘komplex’ phase state (K-state) of Fe–18Al (at.%),” Intermetallics 64, 23–31 (2015).10.1016/j.intermet.2015.04.005
    [47]
    N. V. Ershov, Y. P. Chernenkov, V. A. Lukshina, and O. P. Smirnov, “Short-range order in α-FeAl soft magnetic alloy,” Phys. Solid State 60, 1661–1673 (2018).10.1134/s106378341809010x
    [48]
    V. Pierron-Bohnes, S. Lefebvre, M. Bessiere, and A. Finel, “Short range order in a single crystal of Fe-19.5 at.% Al in the ferromagnetic range measured through X-ray diffuse scattering,” Acta Metall. Mater. 38, 2701–2710 (1990).10.1016/0956-7151(90)90284-n
    [49]
    I. Mirebeau, M. Hennion, and G. Parette, “First measurement of short-range-order inversion as a function of concentration in a transition alloy,” Phys. Rev. Lett. 53, 687 (1984).10.1103/physrevlett.53.687
    [50]
    S. M. Dubiel and J. Zukrowski, “Phase-decomposition-related short-range ordering in an Fe–Cr alloy,” Acta Mater. 61, 6207–6212 (2013).10.1016/j.actamat.2013.07.003
    [51]
    M. Liu, A. Aiello, Y. Xie, and K. Sieradzki, “The effect of short-range order on passivation of Fe-Cr alloys,” J. Electrochem. Soc. 165, C830 (2018).10.1149/2.0871811jes
    [52]
    I. Mirebeau and G. Parette, “Neutron study of the short range order inversion in Fe1−xCrx,” Phys. Rev. B 82, 104203 (2010).10.1103/physrevb.82.104203
    [53]
    S. M. Dubiel and J. Cieslak, “Short-range order in iron-rich Fe-Cr alloys as revealed by Mössbauer spectroscopy,” Phys. Rev. B 83, 180202 (2011).10.1103/physrevb.83.180202
    [54]
    E. P. Yelsukov, E. V. Voronina, and V. A. Barinov, “Mössbauer study of magnetic properties formation in disordered Fe-Al alloys,” J. Magn. Magn Mater. 115, 271–280 (1992).10.1016/0304-8853(92)90069-z
    [55]
    S. C. Moss, “X-ray measurement of short range order in Cu3Au,” J. Appl. Phys. 35, 3547–3553 (1964).10.1063/1.1713268
    [56]
    H. Reichert, S. C. Moss, and K. S. Liang, “Anomalous temperature dependence of the X-ray diffuse scattering intensity of Cu3Au,” Phys. Rev. Lett. 77, 4382 (1996).10.1103/physrevlett.77.4382
    [57]
    M. Bessière, S. Lefebvre, and Y. Calvayrac, “X-ray diffraction study of short-range order in a disordered Au3Cu alloy,” Struct. Sci. 39, 145–153 (1983).10.1107/S0108768183002207
    [58]
    S. Hashimoto and S. Ogawa, “Electron diffraction study on diffuse scattering from disordered Cu3Au alloy,” J. Phys. Soc. Jpn. 29, 710–721 (1970).10.1143/jpsj.29.710
    [59]
    S. C. Moss and R. H. Walker, “Screening singularities and Fermi surface effects in the diffuse scattering from alloys,” J. Appl. Crystallogr. 8, 96–107 (1975).10.1107/s0021889875009727
    [60]
    I. Tsatskis, “Non-mean-field theories of short range order and diffuse scattering anomalies in disordered alloys,” in Local Structure from Diffraction (Springer, 1998), pp. 207–231.
    [61]
    T. R. Welberry, Diffuse X-Ray Scattering and Models of Disorder (Oxford University Press, 2022).
    [62]
    M. Bessiere, E. Dartyge, and S. Lefebvre, “Study of short range order in Au3 Cu by EXAFS,” J. Phys., Colloq. 47, C8-1033–C8-1036 (1986).10.1051/jphyscol:19868199
    [63]
    T. K. Sham, A. Hiraya, and M. Watanabe, “Electronic structure of Cu-Au alloys from the Cu perspective: A Cu L3,2-edge study,” Phys. Rev. B 55, 7585 (1997).10.1103/physrevb.55.7585
    [64]
    Y. A. Babanov, A. V. Ryazhkin, T. Miyanaga, T. Okazaki, A. F. Sidorenko et al., “Short range order in disordered Ni–Mn alloys by EXAFS,” Nucl. Instrum. Methods Phys. Res., Sect. A 448, 364–367 (2000).10.1016/s0168-9002(99)00713-5
    [65]
    A. I. Ismail and R. Haliq, “Influence of Cr-content on the local atomic structure of Fe–Cr alloy, a study using EXAFS,” Radiat. Phys. Chem. 208, 110869 (2023).10.1016/j.radphyschem.2023.110869
    [66]
    W. Schweika and H.-G. Haubold, “Neutron-scattering and Monte Carlo study of short-range order and atomic interaction in Ni0.89Cr0.11,” Phys. Rev. B 37, 9240 (1988).10.1103/physrevb.37.9240
    [67]
    N. Filippova, V. Shabashov, and A. Nikolaev, “Mossbauer study of irradiation-accelerated short-range ordering in binary Fe-Cr alloys,” Phys. Met. Metallogr. 90, 145–152 (2000).
    [68]
    H. Thomas, “Über widerstandslegierungen,” Z. Phys. 129, 219–232 (1951).10.1007/bf01333398
    [69]
    R. G. Davies, “An X-ray and dilatometric study of order and the ‘K-state’ in iron-aluminum alloys,” J. Phys. Chem. Solid. 24, 985–992 (1963).10.1016/0022-3697(63)90002-7
    [70]
    R. J. Taunt and B. Ralph, “Ordering and the K-effect in Ni2Cr,” Phys. Status Solidi A 29, 431–442 (1975).10.1002/pssa.2210290211
    [71]
    E. A. Starke, Jr., V. Gerold, and A. G. Guy, “An investigation of the k-effect in nickel-aluminum alloys,” Acta Metall. 13, 957–964 (1965).10.1016/0001-6160(65)90003-9
    [72]
    B. H. Rabin, W. D. Swank, and R. N. Wright, “Thermophysical properties of alloy 617 from 25 °C to 1000 °C,” Nucl. Eng. Des. 262, 72–80 (2013).10.1016/j.nucengdes.2013.03.048
    [73]
    H. J. Logie, J. Jackson, J. C. Anderson, and F. R. N. Nabarro, “Effect of plastic deformation on resistivity of gold-palladium alloys,” Acta Metall. 9, 707–713 (1961).10.1016/0001-6160(61)90100-6
    [74]
    E. Nagy and I. Nagy, “Ordering in alloy Cu3Au—I,” J. Phys. Chem. Solid. 23, 1605–1612 (1962).10.1016/0022-3697(62)90243-3
    [75]
    P. Wright and J. C. Goodchild, “Vacancy induced ordering in Cu3Au,” Proc. Phys. Soc. 79, 196 (1962).10.1088/0370-1328/79/1/324
    [76]
    M. C. Franzblau and R. B. Gordon, “The order-disorder transformation in Cu3Au at high pressure,” J. Appl. Phys. 38, 103–110 (1967).10.1063/1.1708937
    [77]
    B. Sprusil, V. Sima, B. Chalupa, and B. Smola, “Phase transformations in CuAu and Cu3Au: A comparison between calorimetric and resistometric measurements/Phasenumwandlungen in CuAu und Cu3Au: ein Vergleich zwischen kalorimetrischen und resistometrischen Messungen,” Int. J. Mater. Res. 84, 118–123 (1993).10.1515/ijmr-1993-840211
    [78]
    A. Benisek and E. Dachs, “The vibrational and configurational entropy of disordering in Cu3Au,” J. Alloys Compd. 632, 585–590 (2015).10.1016/j.jallcom.2014.12.215
    [79]
    A. Benisek, E. Dachs, and M. Grodzicki, “Vibrational entropy of disorder in Cu3Au with different degrees of short-range order,” Phys. Chem. Chem. Phys. 20, 19441–19446 (2018).10.1039/c8cp01656a
    [80]
    L. J. Nagel, L. Anthony, and B. Fultz, “Differences in vibrational entropy of disordered and ordered Cu3Au,” Philos. Mag. Lett. 72, 421–427 (1995).10.1080/09500839508242483
    [81]
    A. Marucco and B. Nath, “Effects of ordering on the properties of Ni-Cr alloys,” J. Mater. Sci. 23, 2107–2114 (1988).10.1007/bf01115776
    [82]
    M. Hirabayashi, M. Koiwa, K. Tanaka, T. Tadaki, T. Saburi et al., “An experimental study on the ordered alloy Ni2Cr,” Trans. Jpn. Inst. Metals 10, 365–371 (1969).10.2320/matertrans1960.10.365
    [83]
    N. R. Dudova and R. O. Kaibyshev,“Short-range ordering and mechanical properties of a Ni-20%Cr alloy,” J. Phys.: Conf. Ser. 240, 012081 (2010).10.1088/1742-6596/240/1/012081
    [84]
    P. Singh, A. V. Smirnov, and D. D. Johnson, “Atomic short-range order and incipient long-range order in high-entropy alloys,” Phys. Rev. B 91, 224204 (2015).10.1103/physrevb.91.224204
    [85]
    J. Tian, Y. Wu, T. Cao, J. Pang, X. Zhang et al., “Fast and diverse phase evolution in VCoNi medium entropy alloy,” Mater. Sci. Eng. A 860, 144277 (2022).10.1016/j.msea.2022.144277
    [86]
    T. H. Chou, W. P. Li, L. Y. Zhu, F. Zhu, X. C. Li et al., “Critical impacts of thermodynamic instability and short-range order on deformation mechanisms of VCoNi medium-entropy alloy,” Acta Mater. 277, 120190 (2024).10.1016/j.actamat.2024.120190
    [87]
    M. Vaidya, K. Guruvidyathri, and B. S. Murty, “Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys,” J. Alloys Compd. 774, 856–864 (2019).10.1016/j.jallcom.2018.09.342
    [88]
    H. Hamdi, H. R. Abedi, and Y. Zhang, “A review study on thermal stability of high entropy alloys: Normal/abnormal resistance of grain growth,” J. Alloys Compd. 960, 170826 (2023).10.1016/j.jallcom.2023.170826
    [89]
    D. Ma, M. Yao, K. G. Pradeep, C. C. Tasan, H. Springer et al., “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys,” Acta Mater. 98, 288–296 (2015).10.1016/j.actamat.2015.07.030
    [90]
    Y. Wu, Z. Li, H. Feng, and S. He, “Atomic interactions and order–disorder transition in FCC-type FeCoNiAl1−xTix high-entropy alloys,” Materials 15, 3992 (2022).10.3390/ma15113992
    [91]
    Y. Ma, J. Fan, L. Zhang, M. Zhang, P. Cui et al., “Pressure-induced ordering phase transition in high-entropy alloy,” Intermetallics 103, 63–66 (2018).10.1016/j.intermet.2018.10.003
    [92]
    F. Zhang, H. Lou, B. Cheng, Z. Zeng, and Q. Zeng, “High-pressure induced phase transitions in high-entropy alloys: A review,” Entropy 21, 239 (2019).10.3390/e21030239
    [93]
    S. Zhu, D. Yan, Y. Zhang, L. Han, D. Raabe et al., “Strong and ductile Resinvar alloys with temperature- and time-independent resistivity,” Nat. Commun. 15, 7199 (2024).10.1038/s41467-024-51572-7
    [94]
    M. E. Bloomfield, K. A. Christofidou, P. M. Mignanelli, A.-P. M. Reponen, H. J. Stone et al., “Phase stability of the AlxCrFeCoNi alloy system,” J. Alloys Compd. 926, 166734 (2022).10.1016/j.jallcom.2022.166734
    [95]
    C. Li, M. Zhao, J. C. Li, and Q. Jiang, “B2 structure of high-entropy alloys with addition of Al,” J. Appl. Phys. 104, 113504 (2008).10.1063/1.3032900
    [96]
    Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong et al., “The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys,” Metals 7, 57 (2017).10.3390/met7020057
    [97]
    J. Ding, Q. Yu, M. Asta, and R. O. Ritchie, “Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys,” Proc. Natl. Acad. Sci. U. S. A. 115, 8919–8924 (2018).10.1073/pnas.1808660115
    [98]
    Y. Zhang, Y. N. Osetsky, and W. J. Weber, “Tunable chemical disorder in concentrated alloys: Defect physics and radiation performance,” Chem. Rev. 122, 789–829 (2021).10.1021/acs.chemrev.1c00387
    [99]
    X. D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita et al., “Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy,” Acta Mater. 84, 145–152 (2015).10.1016/j.actamat.2014.10.033
    [100]
    A. Fantin, G. O. Lepore, A. M. Manzoni, S. Kasatikov, T. Scherb et al., “Short-range chemical order and local lattice distortion in a compositionally complex alloy,” Acta Mater. 193, 329–337 (2020).10.1016/j.actamat.2020.04.034
    [101]
    Y. Tong, S. Zhao, H. Bei, T. Egami, Y. Zhang et al., “Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys,” Acta Mater. 183, 172–181 (2020).10.1016/j.actamat.2019.11.026
    [102]
    F. Körmann, A. V. Ruban, and M. H. Sluiter, “Long-ranged interactions in bcc NbMoTaW high-entropy alloys,” Mater. Res. Lett. 5, 35–40 (2017).10.1080/21663831.2016.1198837
    [103]
    F. Walsh, M. Asta, and R. O. Ritchie, “Magnetically driven short-range order can explain anomalous measurements in CrCoNi,” Proc. Natl. Acad. Sci. U. S. A. 118, e2020540118 (2021).10.1073/pnas.2020540118
    [104]
    C. D. Woodgate, D. Hedlund, L. H. Lewis, and J. B. Staunton, “Interplay between magnetism and short-range order in medium- and high-entropy alloys: CrCoNi, CrFeCoNi, and CrMnFeCoNi,” Phys. Rev. Mater. 7, 053801 (2023).10.1103/physrevmaterials.7.053801
    [105]
    C. Niu, A. J. Zaddach, A. A. Oni, X. Sang, J. W. Hurt III et al., “Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo,” Appl. Phys. Lett. 106, 161906 (2015).10.1063/1.4918996
    [106]
    C. Niu, C. R. LaRosa, J. Miao, M. J. Mills, and M. Ghazisaeidi, “Magnetically-driven phase transformation strengthening in high entropy alloys,” Nat. Commun. 9, 1363 (2018).10.1038/s41467-018-03846-0
    [107]
    T. Teramoto, K. Kitasumi, R. Shimohara, Y. Ito, R. Shimizu et al., “Formation condition and effect on the early stages of plastic deformation of chemical short-range order in Cr-Co-Ni medium-entropy alloy,” J. Alloys Compd. 941, 169016 (2023).10.1016/j.jallcom.2023.169016
    [108]
    H. Tanimoto, R. Hozumi, and M. Kawamura, “Electrical resistivity and short-range order in rapid-quenched CrMnFeCoNi high-entropy alloy,” J. Alloys Compd. 896, 163059 (2022).10.1016/j.jallcom.2021.163059
    [109]
    K. Inoue, S. Yoshida, and N. Tsuji, “Direct observation of local chemical ordering in a few nanometer range in CoCrNi medium-entropy alloy by atom probe tomography and its impact on mechanical properties,” Phys. Rev. Mater. 5, 085007 (2021).10.1103/physrevmaterials.5.085007
    [110]
    M. Zhang, Q. Yu, C. Frey, F. Walsh, M. I. Payne et al., “Determination of peak ordering in the CrCoNi medium-entropy alloy via nanoindentation,” Acta Mater. 241, 118380 (2022).10.1016/j.actamat.2022.118380
    [111]
    L. Zhou, Q. Wang, J. Wang, X. Chen, P. Jiang et al., “Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy,” Acta Mater. 224, 117490 (2022).10.1016/j.actamat.2021.117490
    [112]
    Y. Han, H. Chen, Y. Sun, J. Liu, S. Wei et al., “Ubiquitous short-range order in multi-principal element alloys,” Nat. Commun. 15, 6486 (2024).10.1038/s41467-024-49606-1
    [113]
    E. Antillon, C. Woodward, S. I. Rao, B. Akdim, and T. A. Parthasarathy, “Chemical short range order strengthening in a model FCC high entropy alloy,” Acta Mater. 190, 29–42 (2020).10.1016/j.actamat.2020.02.041
    [114]
    D. V. Louzguine-Luzgin and J. Jiang, “On long-term stability of metallic glasses,” Metals 9, 1076 (2019).10.3390/met9101076
    [115]
    Y. Zhao, B. Shang, B. Zhang, X. Tong, H. Ke et al., “Ultrastable metallic glass by room temperature aging,” Sci. Adv. 8, eabn3623 (2022).10.1126/sciadv.abn3623
    [116]
    J. F. Radavich and A. Fort, “Effects of long-time exposure in alloy 625 at,” Superalloys 718, 635–647 (1994).
    [117]
    P. Meisterle and W. Pfeiler, “Resistometric study of SRO-kinetics in α-AgAl,” Acta Metall. 31, 1543–1547 (1983).10.1016/0001-6160(83)90151-7
    [118]
    A. Y. Volkov, A. E. Kostina, E. G. Volkova, O. S. Novikova, and B. D. Antonov, “Microstructure and physicomechanical properties of a Cu-8 at % Pd alloy,” Phys. Met. Metallogr. 118, 1236–1246 (2017).10.1134/s0031918x1712016x
    [119]
    R. G. Davies and R. W. Cahn, “Short range order in aluminium bronze,” Acta Metall. 10, 170–171 (1962).10.1016/0001-6160(62)90062-7
    [120]
    D. M. C. Nicholson and R. H. Brown, “Electrical resistivity of Ni0.8Mo0.2: Explanation of anomalous behavior in short-range ordered alloys,” Phys. Rev. Lett. 70, 3311 (1993).10.1103/physrevlett.70.3311
    [121]
    J. B. Seol, W.-S. Ko, S. S. Sohn, M. Y. Na, H. J. Chang et al., “Mechanically derived short-range order and its impact on the multi-principal-element alloys,” Nat. Commun. 13, 6766 (2022).10.1038/s41467-022-34470-8
    [122]
    J.-H. Ke, E. R. Reese, E. A. Marquis, G. R. Odette, and D. Morgan, “Flux effects in precipitation under irradiation – Simulation of Fe-Cr alloys,” Acta Mater. 164, 586–601 (2019).10.1016/j.actamat.2018.10.063
    [123]
    Y. Zhao, A. Bhattacharya, C. Pareige, C. Massey, P. Zhu et al., “Effect of heavy ion irradiation dose rate and temperature on α′ precipitation in high purity Fe-18%Cr alloy,” Acta Mater. 231, 117888 (2022).10.1016/j.actamat.2022.117888
    [124]
    M.-R. He, S. Wang, S. Shi, K. Jin, H. Bei et al., “Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys,” Acta Mater. 126, 182–193 (2017).10.1016/j.actamat.2016.12.046
    [125]
    Z. Su, T. Shi, H. Shen, L. Jiang, L. Wu et al., “Radiation-assisted chemical short-range order formation in high-entropy alloys,” Scr. Mater. 212, 114547 (2022).10.1016/j.scriptamat.2022.114547
    [126]
    Z. Zhang, Z. Su, B. Zhang, Q. Yu, J. Ding et al., “Effect of local chemical order on the irradiation-induced defect evolution in CrCoNi medium-entropy alloy,” Proc. Natl. Acad. Sci. U. S. A. 120, e2218673120 (2023).10.1073/pnas.2218673120
    [127]
    Y. Zhou, T. Shi, J. Li, L. Wu, Q. Peng et al., “Element-dependent evolution of chemical short-range ordering tendency of NiCoFeCrMn under irradiation,” Int. J. Plast. 171, 103768 (2023).10.1016/j.ijplas.2023.103768
    [128]
    P. Cao, “How does short-range order impact defect kinetics in irradiated multiprincipal element alloys?,” Acc. Mater. Res. 2, 71–74 (2021).10.1021/accountsmr.0c00102
    [129]
    B. Schönfeld, C. R. Sax, J. Zemp, M. Engelke, P. Boesecke et al., “Local order in Cr-Fe-Co-Ni: Experiment and electronic structure calculations,” Phys. Rev. B 99, 014206 (2019).10.1103/physrevb.99.014206
    [130]
    H. Joress, B. Ravel, E. Anber, J. Hollenbach, D. Sur et al., “Why is EXAFS for complex concentrated alloys so hard? Challenges and opportunities for measuring ordering with X-ray absorption spectroscopy,” Matter 6, 3763–3781 (2023).10.1016/j.matt.2023.09.010
    [131]
    S. Calvin, XAFS for Everyone (CRC Press, 2024).
    [132]
    F. Zhang, Y. Tong, K. Jin, H. Bei, W. J. Weber et al., “Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy,” Mater. Res. Lett. 6, 450–455 (2018).10.1080/21663831.2018.1478332
    [133]
    L. R. Owen, E. J. Pickering, H. Y. Playford, H. J. Stone, M. G. Tucker et al., “An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy,” Acta Mater. 122, 11–18 (2017).10.1016/j.actamat.2016.09.032
    [134]
    Q. F. He, P. H. Tang, H. A. Chen, S. Lan, J. G. Wang et al., “Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys,” Acta Mater. 216, 117140 (2021).10.1016/j.actamat.2021.117140
    [135]
    S. D. Wang, X. J. Liu, Z. F. Lei, D. Y. Lin, F. G. Bian et al., “Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys,” Phys. Rev. B 103, 104107 (2021).10.1103/physrevb.103.104107
    [136]
    S. Ghosh, K. Ueltzen, J. George, J. Neugebauer, and F. Körmann, “Chemical ordering and magnetism in face-centered cubic CrCoNi alloy,” npj Comput. Mater. 10, 284 (2024).10.1038/s41524-024-01439-8
    [137]
    D. Billington, A. D. N. James, E. I. Harris-Lee, D. A. Lagos, D. O’Neill et al., “Bulk and element-specific magnetism of medium-entropy and high-entropy Cantor-Wu alloys,” Phys. Rev. B 102, 174405 (2020).10.1103/physrevb.102.174405
    [138]
    A. Smekhova, A. Kuzmin, K. Siemensmeyer, C. Luo, J. Taylor et al., “Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale,” Nano Res. 16, 5626–5639 (2023).10.1007/s12274-022-5135-3
    [139]
    L. Zhu, H. He, M. Naeem, X. Sun, J. Qi et al., “Antiferromagnetism and phase stability of CrMnFeCoNi high-entropy alloy,” Phys. Rev. Lett. 133, 126701 (2024).10.1103/physrevlett.133.126701
    [140]
    T. A. Elmslie, J. Startt, S. Soto-Medina, Y. Yang, K. Feng et al., “Magnetic properties of equiatomic CrMnFeCoNi,” Phys. Rev. B 106, 014418 (2022).10.1103/physrevb.106.014418
    [141]
    Ö. Özgün, D. Koch, A. Çakır, T. Tavşanoğlu, W. Donner et al., “Magnetic properties of fcc and σ phases in equiatomic and off-equiatomic high-entropy Cantor alloys,” Phys. Rev. B 106, 214422 (2022).10.1103/physrevb.106.214422
    [142]
    K. Jin, B. C. Sales, G. M. Stocks, G. D. Samolyuk, M. Daene et al., “Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity,” Sci. Rep. 6, 20159 (2016).10.1038/srep20159
    [143]
    Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang et al., “Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes,” Nature 563, 546–550 (2018).10.1038/s41586-018-0685-y
    [144]
    R. Zhang, S. Zhao, C. Ophus, Y. Deng, S. J. Vachhani et al., “Direct imaging of short-range order and its impact on deformation in Ti-6Al,” Sci. Adv. 5, eaax2799 (2019).10.1126/sciadv.aax2799
    [145]
    X. Chen, Q. Wang, Z. Cheng, M. Zhu, H. Zhou et al., “Direct observation of chemical short-range order in a medium-entropy alloy,” Nature 592, 712–716 (2021).10.1038/s41586-021-03428-z
    [146]
    H.-W. Hsiao, R. Feng, H. Ni, K. An, J. D. Poplawsky et al., “Data-driven electron-diffraction approach reveals local short-range ordering in CrCoNi with ordering effects,” Nat. Commun. 13, 6651 (2022).10.1038/s41467-022-34335-0
    [147]
    X. Chen, F. Yuan, H. Zhou, and X. Wu, “Structure motif of chemical short-range order in a medium-entropy alloy,” Mater. Res. Lett. 10, 149–155 (2022).10.1080/21663831.2022.2029607
    [148]
    S. Moniri, Y. Yang, J. Ding, Y. Yuan, J. Zhou et al., “Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys,” Nature 624, 564–569 (2023).10.1038/s41586-023-06785-z
    [149]
    Y. Li, Y. Wei, Z. Wang, X. Liu, T. Colnaghi et al., “Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography,” Nat. Commun. 14, 7410 (2023).10.1038/s41467-023-43314-y
    [150]
    X. Sun, S. Lu, R. Xie, X. An, W. Li et al., “Can experiment determine the stacking fault energy of metastable alloys?,” Mater. Des. 199, 109396 (2021).10.1016/j.matdes.2020.109396
    [151]
    Z. Zhang, J. Kou, L. Chen, J. Guo, X. Duan et al., “From stacking fault to phase transformation: A quantitative model of plastic deformation of CoCrFeMnNi under different strain rates,” Intermetallics 146, 107585 (2022).10.1016/j.intermet.2022.107585
    [152]
    P. Wu, Y. Zhang, L. Han, K. Gan, D. Yan et al., “Unexpected sluggish martensitic transformation in a strong and super-ductile high-entropy alloy of ultralow stacking fault energy,” Acta Mater. 261, 119389 (2023).10.1016/j.actamat.2023.119389
    [153]
    F. Zhang, H. Lou, Y. Liu, Z. Zeng, X. Chen et al., “Compositional effect on pressure-induced polymorphism in high-entropy alloys,” Mater. Today Chem. 42, 102435 (2024).10.1016/j.mtchem.2024.102435
    [154]
    T. Pradell, D. Crespo, N. Clavaguera, and M. T. Clavaguera-Mora, “Diffusion controlled grain growth in primary crystallization: Avrami exponents revisited,” J. Phys. Condens. Matter 10, 3833 (1998).10.1088/0953-8984/10/17/014
    [155]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return