| Citation: | Liu Letian, Ma Qianyi, Xia Yuhui, Wang Zhenan, Chen Yuekai, Yang Zhiyan, Cai Dongchi, Xu Zewei, Tang Ziyao, Hu Jianghao, An Weiming, Feng Chao, Yan Xueqing, Xu Xinlu. Improvement of photon energy at X-ray free-electron lasers using plasma-based afterburner[J]. Matter and Radiation at Extremes, 2025, 10(4): 047202. doi: 10.1063/5.0272184 |
| [1] |
C. Pellegrini, A. Marinelli, and S. Reiche, “The physics of x-ray free-electron lasers,” Rev. Mod. Phys. 88, 015006 (2016).10.1103/revmodphys.88.015006
|
| [2] |
P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt et al., “First lasing and operation of an ångstrom-wavelength free-electron laser,” Nat. Photonics 4, 641–647 (2010).10.1038/nphoton.2010.176
|
| [3] |
C. Bostedt, S. Boutet, D. M. Fritz, Z. Huang, H. J. Lee et al., “Linac coherent light source: The first five years,” Rev. Mod. Phys. 88, 015007 (2016).10.1103/revmodphys.88.015007
|
| [4] |
H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian et al., “Femtosecond x-ray protein nanocrystallography,” Nature 470, 73–77 (2011).10.1038/nature09750
|
| [5] |
S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends, A. Aquila et al., “High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362–364 (2012).10.1126/science.1217737
|
| [6] |
T. Ekeberg, M. Svenda, C. Abergel, F. R. N. C. Maia, V. Seltzer et al., “Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser,” Phys. Rev. Lett. 114, 098102 (2015).10.1103/physrevlett.114.098102
|
| [7] |
A. Rudenko, L. Inhester, K. Hanasaki, X. Li, S. J. Robatjazi et al., “Femtosecond response of polyatomic molecules to ultra-intense hard x-rays,” Nature 546, 129–132 (2017).10.1038/nature22373
|
| [8] |
M. Trigo, M. Fuchs, J. Chen, M. P. Jiang, M. Cammarata et al., “Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations,” Nat. Phys. 9, 790–794 (2013).10.1038/nphys2788
|
| [9] |
J. Bohon, A. Ortega, J. O’Toole, R. L. Sheffield, and C. W. Barnes, “A survey of current and emerging experimental requirements for dynamic mesoscale materials science at user facilities,” AIP Conf. Proc. 2272, 060003 (2020).10.1063/12.0000833
|
| [10] |
J. L. Barber, C. W. Barnes, R. L. Sandberg, and R. L. Sheffield, “Diffractive imaging at large Fresnel number: Challenge of dynamic mesoscale imaging with hard x rays,” Phys. Rev. B 89, 184105 (2014).10.1103/physrevb.89.184105
|
| [11] |
Z. Sun, J. Fan, H. Li, and H. Jiang, “Current status of single particle imaging with x-ray lasers,” Appl. Sci. 8, 132 (2018).10.3390/app8010132
|
| [12] |
Y. Shvyd’ko, R. Röhlsberger, O. Kocharovskaya, J. Evers, G. A. Geloni et al., “Resonant x-ray excitation of the nuclear clock isomer 45Sc,” Nature 622, 471–475 (2023).10.1038/s41586-023-06491-w
|
| [13] |
V. Lipp, I. Inoue, and B. Ziaja, “Advantages of using hard x-ray photons for ultrafast diffraction measurements,” Photonics 10, 948 (2023).10.3390/photonics10080948
|
| [14] |
T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi et al., “A compact X-ray free-electron laser emitting in the sub-ångström region,” Nat. Photonics 6, 540–544 (2012).10.1038/nphoton.2012.141
|
| [15] |
T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267
|
| [16] |
P. Chen, J. M. Dawson, R. W. Huff, and T. Katsouleas, “Acceleration of electrons by the interaction of a bunched electron beam with a plasma,” Phys. Rev. Lett. 54, 693 (1985).10.1103/physrevlett.54.693
|
| [17] |
E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/revmodphys.81.1229
|
| [18] |
W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu et al., “Free-electron lasing at 27 nanometres based on a laser wakefield accelerator,” Nature 595, 516–520 (2021).10.1038/s41586-021-03678-x
|
| [19] |
M. Labat, J. C. Cabadağ, A. Ghaith, A. Irman, A. Berlioux et al., “Seeded free-electron laser driven by a compact laser plasma accelerator,” Nat. Photonics 17, 150–156 (2023).10.1038/s41566-022-01104-w
|
| [20] |
R. Pompili, D. Alesini, M. P. Anania, S. Arjmand, M. Behtouei et al., “Free-electron lasing with compact beam-driven plasma wakefield accelerator,” Nature 605, 659–662 (2022).10.1038/s41586-022-04589-1
|
| [21] |
S. Lee, T. Katsouleas, P. Muggli, W. B. Mori, C. Joshi et al., “Energy doubler for a linear collider,” Phys. Rev. Spec. Top. Accel. Beams 5, 011001 (2002).10.1103/physrevstab.5.011001
|
| [22] |
I. Blumenfeld, C. E. Clayton, F.-J. Decker, M. J. Hogan, C. Huang et al., “Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator,” Nature 445, 741–744 (2007).10.1038/nature05538
|
| [23] |
M. Litos, E. Adli, W. An, C. I. Clarke, C. E. Clayton et al., “High-efficiency acceleration of an electron beam in a plasma wakefield accelerator,” Nature 515, 92–95 (2014).10.1038/nature13882
|
| [24] | |
| [25] | |
| [26] |
C. Pellegrini, “Free electron lasers: Development and applications,” Part. Accel. 33, 159–170 (1990).
|
| [27] |
S.-y. Lee, Accelerator Physics, 4th ed. (World Scientific Publishing Company, 2018), p. 47.
|
| [28] |
X. L. Xu, J. F. Hua, Y. P. Wu, C. J. Zhang, F. Li et al., “Physics of phase space matching for staging plasma and traditional accelerator components using longitudinally tailored plasma profiles,” Phys. Rev. Lett. 116, 124801 (2016).10.1103/physrevlett.116.124801
|
| [29] |
Y. Zhao, W. An, X. Xu, F. Li, L. Hildebrand et al., “Emittance preservation through density ramp matching sections in a plasma wakefield accelerator,” Phys. Rev. Accel. Beams 23, 011302 (2020).10.1103/physrevaccelbeams.23.011302
|
| [30] |
S. Z. Green, E. Adli, C. I. Clarke, S. Corde, S. A. Edstrom et al., “Laser ionized preformed plasma at FACET,” Plasma Phys. Controlled Fusion 56, 084011 (2014).10.1088/0741-3335/56/8/084011
|
| [31] |
A. Doche, C. Beekman, S. Corde, J. M. Allen, C. I. Clarke et al., “Acceleration of a trailing positron bunch in a plasma wakefield accelerator,” Sci. Rep. 7, 14180 (2017).10.1038/s41598-017-14524-4
|
| [32] |
C. Huang, V. K. Decyk, C. Ren, M. Zhou, W. Lu et al., “QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas,” J. Comput. Phys. 217, 658–679 (2006).10.1016/j.jcp.2006.01.039
|
| [33] |
W. An, V. K. Decyk, W. B. Mori, and T. M. Antonsen, “An improved iteration loop for the three dimensional quasi-static particle-in-cell algorithm: QuickPIC,” J. Comput. Phys. 250, 165–177 (2013).10.1016/j.jcp.2013.05.020
|
| [34] |
W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, “Nonlinear theory for relativistic plasma wakefields in the blowout regime,” Phys. Rev. Lett. 96, 165002 (2006).10.1103/physrevlett.96.165002
|
| [35] |
M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori et al., “Beam loading in the nonlinear regime of plasma-based acceleration,” Phys. Rev. Lett. 101, 145002 (2008).10.1103/physrevlett.101.145002
|
| [36] |
X. L. Xu, J. F. Hua, F. Li, C. J. Zhang, L. X. Yan et al., “Phase-space dynamics of ionization injection in plasma-based accelerators,” Phys. Rev. Lett. 112, 035003 (2014).10.1103/physrevlett.112.035003
|
| [37] | |
| [38] | |
| [39] |
G. V. Stupakov, “Effect of centrifugal transverse wakefield for microbunch in bend,” AIP Conf. Proc. 468, 334–347 (1999).10.1063/1.58423
|
| [40] | |
| [41] |
C. B. Schroeder, C. Pellegrini, and P. Chen, “Quantum effects in high-gain free-electron lasers,” Phys. Rev. E 64, 056502 (2001).10.1103/physreve.64.056502
|
| [42] |
Z. Huang and K.-J. Kim, “Review of x-ray free-electron laser theory,” Phys. Rev. Spec. Top. Accel. Beams 10, 034801 (2007).10.1103/physrevstab.10.034801
|
| [43] |
E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Calculation of energy diffusion in an electron beam due to quantum fluctuations of undulator radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 381, 545–547 (1996).10.1016/s0168-9002(96)00708-5
|
| [44] |
N. Kroll, P. Morton, and M. Rosenbluth, “Free-electron lasers with variable parameter wigglers,” IEEE J. Quantum Electron. 17, 1436–1468 (1981).10.1109/jqe.1981.1071285
|
| [45] |
S. Reiche, “GENESIS 1.3: A fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res., Sect. A 429, 243–248 (1999).10.1016/s0168-9002(99)00114-x
|
| [46] |
A. Ghaith, M.-E. Couprie, D. Oumbarek-Espinos, I. A. Andriyash, F. Massimo et al., “Undulator design for a laser-plasma-based free-electron-laser,” Phys. Rep. 937, 1–73 (2021).10.1016/j.physrep.2021.09.001
|
| [47] |
R. Bonifacio, L. De Salvo, P. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).10.1103/physrevlett.73.70
|
| [48] |
I. Agapov, G. Geloni, S. Tomin, and I. Zagorodnov, “OCELOT: A software framework for synchrotron light source and FEL studies,” Nucl. Instrum. Methods Phys. Res., Sect. A 768, 151–156 (2014).10.1016/j.nima.2014.09.057
|
| [49] |
J. B. Rosenzweig, A. M. Cook, A. Scott, M. C. Thompson, and R. B. Yoder, “Effects of ion motion in intense beam-driven plasma wakefield accelerators,” Phys. Rev. Lett. 95, 195002 (2005).10.1103/physrevlett.95.195002
|
| [50] |
W. An, W. Lu, C. Huang, X. Xu, M. J. Hogan et al., “Ion motion induced emittance growth of matched electron beams in plasma wakefields,” Phys. Rev. Lett. 118, 244801 (2017).10.1103/physrevlett.118.244801
|
| [51] |
D. H. Whittum, W. M. Sharp, S. S. Yu, M. Lampe, and G. Joyce, “Electron-hose instability in the ion-focused regime,” Phys. Rev. Lett. 67, 991–994 (1991).10.1103/physrevlett.67.991
|
| [52] |