| Citation: | Lacoste C. L. C., Catrix E., Vallières S., Hirsch-Passicos A., Guilberteau T., Lafargue M., Lopez J., Manek-Hönninger I., Fourmaux S., Raffestin D., d’Humières E., Antici P., Bardon M.. Experimental and numerical investigation of the impact of helical coil targets on laser-driven proton and carbon accelerations[J]. Matter and Radiation at Extremes, 2025, 10(3): 037602. doi: 10.1063/5.0257518 |
| [1] |
M. Dunne, “Laser-driven particle accelerators,” Science 312, 374–376 (2006).10.1126/science.1126051
|
| [2] |
S. Vallières, M. Salvadori, P. Puyuelo-Valdes, S. Payeur, S. Fourmaux et al., “Thomson parabola and time-of-flight detector cross-calibration methodology on the ALLS 100 TW laser-driven ion acceleration beamline,” Rev. Sci. Instrum. 91, 103303 (2020).10.1063/5.0020257
|
| [3] |
S. Fourmaux, S. Buffechoux, B. Albertazzi, D. Capelli, A. Lévy et al., “Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses,” Phys. Plasmas 20, 013110 (2013).10.1063/1.4789748
|
| [4] |
D. Raffestin, L. Lecherbourg, I. Lantuéjoul, B. Vauzour, P. E. Masson-Laborde et al., “Enhanced ion acceleration using the high-energy petawatt PETAL laser,” Matter Radiat. Extremes 6, 569 (2021).10.1063/5.0046679
|
| [5] |
T. Ziegler, I. Göthel, S. Assenbaum, C. Bernert, F.-E. Brack et al., “Laser-driven high-energy proton beams from cascaded acceleration regimes,” Nat. Phys. 20, 1211 (2024).10.1038/s41567-024-02505-0
|
| [6] |
T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert et al., “Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator,” Phys. Rev. Lett. 92, 204801 (2004).10.1103/physrevlett.92.204801
|
| [7] |
L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert et al., “Dynamics of electric fields driving the laser acceleration of multi-MeV protons,” Phys. Rev. Lett. 95, 195001 (2005).10.1103/physrevlett.95.195001
|
| [8] |
P. Patel, A. Mackinnon, M. Key, T. Cowan, M. Foord et al., “Isochoric heating of solid-density matter with an ultrafast proton beam,” Phys. Rev. Lett. 91, 125004 (2003).10.1103/physrevlett.91.125004
|
| [9] |
P. Antici, J. Fuchs, S. Atzeni, A. Benuzzi, E. Brambrink et al., “Isochoric heating of matter by laser-accelerated high-energy protons,” J. Phys. IV 133, 1077–1079 (2006).10.1051/jp4:2006133218
|
| [10] |
K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou et al., “Laser-triggered ion acceleration and table top isotope production,” Appl. Phys. Lett. 78, 595–597 (2001).10.1063/1.1343845
|
| [11] |
K. L. Lancaster, S. Karsch, H. Habara, F. N. Beg, E. L. Clark et al., “Characterization of 7Li(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography,” Phys. Plasmas 11, 3404–3408 (2004).10.1063/1.1756911
|
| [12] |
M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi et al., “Proton imaging: A diagnostic for inertial confinement fusion/fast ignitor studies,” Plasma Phys. Control. Fusion 43, A267 (2001).10.1088/0741-3335/43/12a/320
|
| [13] |
M. Borghesi, L. Romagnani, A. Schiavi, D. H. Campbell, M. G. Haines et al., “Measurement of highly transient electrical charging following high-intensity laser–solid interaction,” Appl. Phys. Lett. 82, 1529–1531 (2003).10.1063/1.1560554
|
| [14] |
M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436 (2001).10.1103/physrevlett.86.436
|
| [15] |
V. Y. Bychenkov, W. Rozmus, A. Maksimchuk, D. Umstadter, and C. E. Capjack, “Fast ignitor concept with light ions,” Plasma Phys. Rep. 27, 1017–1020 (2001).10.1134/1.1426135
|
| [16] |
M. Barberio, M. Scisciò, S. Vallières, F. Cardelli, S. N. Chen et al., “Laser-accelerated particle beams for stress testing of materials,” Nat. Commun. 9, 372 (2018).10.1038/s41467-017-02675-x
|
| [17] |
M. Barberio, S. Veltri, M. Scisciò, and P. Antici, “Laser-accelerated proton beams as diagnostics for cultural heritage,” Sci. Rep. 7, 40415 (2017).10.1038/srep40415
|
| [18] |
M. Barberio, M. Scisciò, S. Vallières, S. Veltri, A. Morabito et al., “Laser-generated proton beams for high-precision ultra-fast crystal synthesis,” Sci. Rep. 7, 12522 (2017).10.1038/s41598-017-12782-w
|
| [19] |
R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
|
| [20] |
S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh et al., “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542–549 (2001).10.1063/1.1333697
|
| [21] |
T. Toncian, M. Borghesi, J. Fuchs, E. d’Humieres, P. Antici et al., “Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons,” Science 312, 410–413 (2006).10.1126/science.1124412
|
| [22] |
A. J. Kemp, S. C. Wilks, and M. Tabak, “Laser-to-proton conversion efficiency studies for proton fast ignition,” Phys. Plasmas 31, 042709 (2024).10.1063/5.0191531
|
| [23] |
P. Antici, M. Fazi, A. Lombardi, M. Migliorati, L. Palumbo et al., “Numerical study of a linear accelerator using laser-generated proton beams as a source,” J. Appl. Phys. 104, 124901 (2008).10.1063/1.3021160
|
| [24] |
P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L. Palumbo et al., “A compact post-acceleration scheme for laser-generated protons,” Phys. Plasmas 18, 073103 (2011).10.1063/1.3574361
|
| [25] |
S. Kar, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann et al., “Guided post-acceleration of laser-driven ions by a miniature modular structure,” Nat. Commun. 7, 10792 (2016).10.1038/ncomms10792
|
| [26] |
A. Hirsch-Passicos, C. L. C. Lacoste, F. André, Y. Elskens, E. D’Humières et al., “Helical coil design with controlled dispersion for bunching enhancement of protons generated by the target normal sheath acceleration,” Phys. Rev. E 109, 025211 (2024).10.1103/physreve.109.025211
|
| [27] |
C. L. C. Lacoste, A. Hirsch-Passicos, E. d’Humières, V. T. Tikhonchuk, P. Antici et al., “Theoretical model of current propagation in a helical coil with varying geometry and screen tube,” Matter Radiat. Extremes 9, 067201 (2024).10.1063/5.0221820
|
| [28] |
M. Bardon, J. G. Moreau, L. Romagnani, C. Rousseaux, M. Ferri et al., “Physics of chromatic focusing, post-acceleration and bunching of laser-driven proton beams in helical coil targets,” Plasma Phys. Control. Fusion 62, 125019 (2020).10.1088/1361-6587/abbe35
|
| [29] |
P. Martin, H. Ahmed, O. Cavanagh, S. Ferguson, J. S. Green et al., “Multi-parametric characterization of proton bunches above 50 MeV generated by helical coil targets,” High Power Laser Sci. Eng. 12, e88 (2024).10.1017/hpl.2024.64
|
| [30] |
H. Ahmed, P. Hadjisolomou, K. Naughton, A. Alejo, S. Brauckmann et al., “High energy implementation of coil-target scheme for guided re-acceleration of laser-driven protons,” Sci. Rep. 11, 699 (2021).10.1038/s41598-020-77997-w
|
| [31] |
P. Hadjisolomou, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann et al., “Dynamics of guided post-acceleration of protons in a laser-driven travelling-field accelerator,” Plasma Phys. Contr. Fusion 62, 115023 (2020).10.1088/1361-6587/abb91a
|
| [32] |
G. S. Kino and S. F. Paik, “Circuit theory of coupled transmission systems,” J. Appl. Phys. 33, 3002–3008 (1962).10.1063/1.1728553
|
| [33] |
J. R. Pierce, “Traveling-wave tubes,” Bell Syst. Tech. J. 29, 189–250 (1950).10.1002/j.1538-7305.1950.tb00465.x
|
| [34] |
B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A Mater. Sci. Process. 63, 109 (1996).10.1007/bf01567637
|
| [35] |
K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3, e149 (2014).10.1038/lsa.2014.30
|
| [36] |
R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).10.1038/nphoton.2008.47
|
| [37] |
P. Balage, J. Lopez, G. Bonamis, C. Hönninger, and I. Manek-Hönninger, “Crack-free high-aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz-bursts,” Int. J. Extrem. Manuf. 5, 015002 (2023).10.1088/2631-7990/acaa14
|
| [38] |
T. Guilberteau, P. Balage, M. Lafargue, J. Lopez, L. Gemini et al., “Bessel beam femtosecond laser interaction with fused silica before and after chemical etching: Comparison of single pulse, MHz-burst, and GHz-burst,” Micromachines 15, 1313 (2024).10.3390/mi15111313
|
| [39] |
E. Catrix, F. Boivin, K. Langlois, S. Vallières, C. Y. Boynukara et al., “Stable high repetition-rate laser-driven proton beam production for multidisciplinary applications on the advanced laser light source ion beamline,” Rev. Sci. Instrum. 94, 103003 (2023).10.1063/5.0160783
|
| [40] |
R. Lelièvre, E. Catrix, S. Vallières, S. Fourmaux, A. Allaoua et al., “High repetition-rate 0.5 Hz broadband neutron source driven by the Advanced Laser Light Source,” Phys. Plasmas 31, 093106 (2024).10.1063/5.0218582.
|
| [41] | |
| [42] | |
| [43] |