Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
Triantafyllidis A., Marquès J.-R., Ferri S., Calisti A., Benkadoum Y., De León Y., Dearling A., Ciardi A., Béard J., Lagarrigue J.-M., Ozaki N., Koenig M., Albertazzi B.. Zeeman splitting observations in laser-produced magnetized blast waves[J]. Matter and Radiation at Extremes, 2025, 10(4): 047603. doi: 10.1063/5.0256859
Citation: Triantafyllidis A., Marquès J.-R., Ferri S., Calisti A., Benkadoum Y., De León Y., Dearling A., Ciardi A., Béard J., Lagarrigue J.-M., Ozaki N., Koenig M., Albertazzi B.. Zeeman splitting observations in laser-produced magnetized blast waves[J]. Matter and Radiation at Extremes, 2025, 10(4): 047603. doi: 10.1063/5.0256859

Zeeman splitting observations in laser-produced magnetized blast waves

doi: 10.1063/5.0256859
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: angelos.triantafyllidis@polytechnique.edu and bruno.albertazzi@polytechnique.edu
  • Received Date: 2025-01-07
  • Accepted Date: 2025-04-20
  • Available Online: 2025-11-28
  • Publish Date: 2025-07-01
  • We report the observation of Zeeman splitting in multiple spectral lines emitted by a laser-produced, magnetized plasma (1–3 × 1018 cm−3, 1–15 eV) in the context of a laboratory astrophysics experiment under a controlled magnetic field up to 20 T. Nitrogen lines (NII) in the visible range (563–574 nm) were used to diagnose the magnetic field and plasma conditions. This was performed by coupling our data with the Stark–Zeeman line-shape code PPPB. The excellent agreement between experiment and simulations paves the way for a non-intrusive experimental platform to get time-resolved measurements of the local magnetic field in laboratory plasmas.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    A. Triantafyllidis: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Funding acquisition (supporting); Investigation (lead); Methodology (lead); Project administration (lead); Resources (lead); Software (lead); Validation (lead); Visualization (lead); Writing – original draft (lead); Writing – review & editing (lead). J.-R. Marquès: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (supporting); Resources (equal); Software (equal); Supervision (equal); Validation (equal); Writing – review & editing (supporting). S. Ferri: Formal analysis (supporting); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Supervision (equal); Writing – original draft (supporting); Writing – review & editing (supporting). A. Calisti: Formal analysis (supporting); Investigation (supporting); Methodology (supporting); Software (supporting); Validation (supporting); Writing – review & editing (supporting). Y. Benkadoum: Data curation (supporting); Investigation (supporting); Methodology (supporting); Resources (supporting); Writing – review & editing (supporting). Y. De León: Formal analysis (supporting); Investigation (supporting); Methodology (supporting); Software (supporting); Writing – review & editing (supporting). A. Dearling: Data curation (supporting); Investigation (supporting); Writing – review & editing (supporting). A. Ciardi: Investigation (supporting); Methodology (supporting); Project administration (supporting); Supervision (supporting); Writing – original draft (supporting); Writing – review & editing (supporting). J. Béard: Data curation (supporting); Methodology (supporting); Validation (supporting); Writing – review & editing (supporting). J.-M. Lagarrigue: Data curation (supporting); Methodology (supporting); Validation (supporting); Writing – review & editing (supporting). N. Ozaki: Data curation (supporting); Supervision (supporting); Writing – review & editing (supporting). M. Koenig: Conceptualization (equal); Data curation (equal); Funding acquisition (lead); Investigation (equal); Methodology (equal); Project administration (lead); Resources (equal); Supervision (lead); Validation (equal); Visualization (equal); Writing – review & editing (equal). B. Albertazzi: Conceptualization (equal); Data curation (equal); Funding acquisition (lead); Investigation (equal); Methodology (equal); Project administration (lead); Resources (equal); Supervision (lead); Validation (equal); Visualization (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    B. T. Draine, “Interstellar shock waves with magnetic precursors,” Astrophys. J. 241, 1021–1038 (1980).10.1086/158416
    [2]
    B. T. Draine and C. F. McKee, “Theory of interstellar shocks,” Annu. Rev. Astron. Astrophys. 31, 373–432 (1993).10.1146/annurev.astro.31.1.373
    [3]
    D. R. Flower and G. Pineau des Forêts, “C-type shocks in the interstellar medium: Profiles of CH+ and CH absorption lines,” Mon. Not. Roy. Astron. Soc. 297, 1182–1188 (1998).10.1046/j.1365-8711.1998.01574.x
    [4]
    J. L. West, S. Safi-Harb, T. Jaffe, R. Kothes, T. L. Landecker et al., “The connection between supernova remnants and the galactic magnetic field: A global radio study of the axisymmetric sample,” Astron. Astrophys. 587, A148 (2016).10.1051/0004-6361/201527001
    [5]
    P. Mabey, B. Albertazzi, G. Rigon, J.-R. Marquès, C. A. J. Palmer et al., “Laboratory study of bilateral supernova remnants and continuous MHD shocks,” Astrophys. J. 896, 167 (2020).10.3847/1538-4357/ab92a4
    [6]
    A. Triantafyllidis, J.-R. Marquès, Y. Benkadoum, Y. De León, A. Ciardi et al., “Dynamics and energy dissipation of collisional blast waves in a perpendicular magnetic field,” Phys. Plasmas 32, 022102 (2025).10.1063/5.0238064
    [7]
    W. Marshall, “The structure of magneto-hydrodynamic shock waves,” Proc. R. Soc. London, Ser. A 233, 367–376 (1955).10.1098/rspa.1955.0272
    [8]
    F. V. Coroniti, “Dissipation discontinuities in hydromagnetic shock waves,” J. Plasma Phys. 4, 265–282 (1970).10.1017/s0022377800004992
    [9]
    J. A. Stamper, K. Papadopoulos, R. N. Sudan, S. O. Dean, E. A. McLean et al., “Spontaneous magnetic fields in laser-produced plasmas,” Phys. Rev. Lett. 26, 1012 (1971).10.1103/physrevlett.26.1012
    [10]
    L. Lancia, B. Albertazzi, C. Boniface, A. Grisollet, R. Riquier et al., “Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction,” Phys. Rev. Lett. 113, 235001 (2014).10.1103/physrevlett.113.235001
    [11]
    S. A. Slutz and R. A. Vesey, “High-gain magnetized inertial fusion,” Phys. Rev. Lett. 108, 025003 (2012).10.1103/physrevlett.108.025003
    [12]
    S. A. Slutz, W. A. Stygar, M. R. Gomez, K. J. Peterson, A. B. Sefkow et al., “Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators,” Phys. Plasmas 23, 022702 (2016).10.1063/1.4941100
    [13]
    [14]
    S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasma Physics, 1 (Elsevier, 1965), p. 205.
    [15]
    E. M. Epperlein and M. G. Haines, “Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation,” Phys. Fluids 29, 1029–1041 (1986).10.1063/1.865901
    [16]
    D. Froula, J. Ross, B. Pollock, P. Davis, A. James et al., “Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering,” Phys. Rev. Lett. 98, 135001 (2007).10.1103/physrevlett.98.135001
    [17]
    B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht et al., “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551
    [18]
    E. T. Everson, P. Pribyl, C. G. Constantin, A. Zylstra, D. Schaeffer et al., “Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas,” Rev. Sci. Instrum. 80, 113505 (2009).10.1063/1.3246785
    [19]
    J. L. Peebles, J. R. Davies, D. H. Barnak, F. Garcia-Rubio, P. V. Heuer et al., “An assessment of generating quasi-static magnetic fields using laser-driven ‘capacitor’ coils,” Phys. Plasmas 29, 080501 (2022).10.1063/5.0096784
    [20]
    M. Borghesi, A. J. MacKinnon, A. R. Bell, R. Gaillard, and O. Willi, “Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse,” Phys. Rev. Lett. 81, 112 (1998).10.1103/physrevlett.81.112
    [21]
    M. Khan, C. Das, B. Chakraborty, T. Desai, H. C. Pant et al., “Self-generated magnetic field and faraday rotation in a laser-produced plasma,” Phys. Rev. E 58, 925 (1998).10.1103/physreve.58.925
    [22]
    D. Vojna, O. Slezák, A. Lucianetti, and T. Mocek, “Verdet constant of magneto-active materials developed for high-power faraday devices,” Appl. Sci. 9, 3160 (2019).10.3390/app9153160
    [23]
    B. Albertazzi, S. N. Chen, P. Antici, J. Böker, M. Borghesi et al., “Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation,” Phys. Plasmas 22, 123108 (2015).10.1063/1.4936095
    [24]
    D. B. Schaeffer, A. F. A. Bott, M. Borghesi, K. A. Flippo, W. Fox et al., “Proton imaging of high-energy-density laboratory plasmas,” Rev. Mod. Phys. 95, 045007 (2023).10.1103/revmodphys.95.045007
    [25]
    J. A. Pearcy, G. D. Sutcliffe, T. M. Johnson, B. L. Reichelt, S. G. Dannhoff et al., “Hohlraum fields with monoenergetic proton radiography at omega,” Appl. Opt. 63, A98–A105 (2024).10.1364/ao.506985
    [26]
    B. Albertazzi, P. Mabey, Th. Michel, G. Rigon, J.-R. Marquès et al., “Experimental characterization of the interaction zone between counter-propagating Taylor Sedov blast waves,” Phys. Plasmas 27, 022111 (2020).10.1063/1.5137795
    [27]
    N. C. Woolsey, A. Asfaw, B. Hammel, C. Keane, C. A. Back et al., “Spectroscopy of compressed high energy density matter,” Phys. Rev. E 53, 6396 (1996).10.1103/physreve.53.6396
    [28]
    S. Tessarin, D. Mikitchuk, R. Doron, E. Stambulchik, E. Kroupp et al., “Beyond Zeeman spectroscopy: Magnetic-field diagnostics with Stark-dominated line shapes,” Phys. Plasmas 18, 093301 (2011).10.1063/1.3625555
    [29]
    E. C. Dutra, J. A. Koch, R. Presura, W. Angermeier, T. Darling et al., “A multi-axial time-resolved spectroscopic technique for magnetic field, electron density, and temperature measurements in dense magnetized plasmas,” in Site-Directed Research and Development (U.S. Department of Energy, 2016), pp. 23–32.
    [30]
    B. Zhu, Z. Zhang, C. Liu, D. Yuan, W. Jiang et al., “Observation of Zeeman splitting effect in a laser-driven coil,” Matter Radiat. Extremes 7, 024402 (2022).10.1063/5.0060954
    [31]
    H. R. Griem, M. Baranger, A. C. Kolb, and G. Oertel, “Stark broadening of neutral helium lines in a plasma,” Phys. Rev. 125, 177 (1962).10.1103/physrev.125.177
    [32]
    G. Pérez-Callejo, C. Vlachos, C. A. Walsh, R. Florido, M. Bailly-Grandvaux et al., “Cylindrical implosion platform for the study of highly magnetized plasmas at laser megajoule,” Phys. Rev. E 106, 035206 (2022).10.1103/physreve.106.035206
    [33]
    S. Ferri, O. Peyrusse, and A. Calisti, “Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields,” Matter Radiat. Extremes 7, 015901 (2022).10.1063/5.0058552
    [34]
    P. Zeeman and M. Bôcher, “The effect of magnetisation on the nature of light emitted by a substance,” Nature 55(1424), 347 (1897).10.1038/055347a0
    [35]
    J. A. Marozas, “Fourier transform–based continuous phase-plate design technique: A high-pass phase-plate design as an application for omega and the national ignition facility,” J. Opt. Soc. Am. A 24, 74–83 (2007).10.1364/josaa.24.000074
    [36]
    I. H. Hutchinson, “Principles of plasma diagnostics: Second edition,” Plasma Phys. Controlled Fusion 44, 2603 (2002).10.1088/0741-3335/44/12/701
    [37]
    J. E. Miller, T. R. Boehly, A. Melchior, D. D. Meyerhofer, P. M. Celliers et al., “Streaked optical pyrometer system for laser-driven shock-wave experiments on omega,” Rev. Sci. Instrum. 78, 034903 (2007).10.1063/1.2712189
    [38]
    I. Geoffrey Taylor, “The formation of a blast wave by a very intense explosion,” Proc. R. Soc. London, Ser. A 201, 159 (1950).10.1098/rspa.1950.0049
    [39]
    L. Ivanovich Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech. 10, 241–250 (1946).
    [40]
    R. A. Treumann, “Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks,” Astron. Astrophys. Rev. 17, 409–535 (2009).10.1007/s00159-009-0024-2
    [41]
    S. Mar, J. A. Aparicio, M. I. d. l. Rosa, J. A. d. Val, M. A. Gigosos et al., “Measurement of Stark broadening and shift of visible N II lines,” J. Phys. B: At., Mol. Opt. Phys. 33, 1169 (2000).10.1088/0953-4075/33/6/304
    [42]
    A. Kramida, Yu. Ralchenko, and J. Reader, NIST Atomic Spectra Database (Ver. 5.10) (National Institute of Standards and Technology, Gaithersburg, MD, 2022).
    [43]
    M. S. Dimitrijević and N. Konjević, “Stark widths of doubly- and triply-ionized atom lines,” J. Quant. Spectrosc. Radiat. Transfer 24, 451–459 (1980).10.1016/0022-4073(80)90014-x
    [44]
    H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3–12 (2005).10.1016/j.hedp.2005.07.001
    [45]
    C. Vlachos, V. Ospina-Bohórquez, P. W. Bradford, G. Pérez-Callejo, M. Ehret et al., “Laser-driven quasi-static B-fields for magnetized high-energy-density experiments,” Phys. Plasmas 31, 032702 (2024).10.1063/5.0190305
    [46]
    M. Bailly-Grandvaux, R. Florido, C. A. Walsh, G. Pérez-Callejo, F. N. Beg et al., “Impact of strong magnetization in cylindrical plasma implosions with applied B-field measured via x-ray emission spectroscopy,” Phys. Rev. Res. 6, L012018 (2024).10.1103/physrevresearch.6.l012018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return