Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 3
May  2025
Turn off MathJax
Article Contents
Li Mei, Liu Xuqiang, Jiang Sheng, Smith Jesse S., Wang Lihua, Peng Shang, Chen Yongjin, Gong Yu, Lin Chuanlong, Yang Wenge, Mao Ho-Kwang. Formation of distinctive nanostructured metastable polymorphs mediated by kinetic transition pathways in germanium[J]. Matter and Radiation at Extremes, 2025, 10(3): 037801. doi: 10.1063/5.0256231
Citation: Li Mei, Liu Xuqiang, Jiang Sheng, Smith Jesse S., Wang Lihua, Peng Shang, Chen Yongjin, Gong Yu, Lin Chuanlong, Yang Wenge, Mao Ho-Kwang. Formation of distinctive nanostructured metastable polymorphs mediated by kinetic transition pathways in germanium[J]. Matter and Radiation at Extremes, 2025, 10(3): 037801. doi: 10.1063/5.0256231

Formation of distinctive nanostructured metastable polymorphs mediated by kinetic transition pathways in germanium

doi: 10.1063/5.0256231
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: mei.li@hpstar.ac.cn and chuanlong.lin@hpstar.ac.cn
  • Received Date: 2025-01-03
  • Accepted Date: 2025-03-23
  • Available Online: 2025-11-28
  • Publish Date: 2025-05-01
  • High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression. However, the mechanism and transition kinetics remain poorly understood. Here, we investigate the formation of metastable phases and nanostructures in germanium via controllable transition pathways of β-Sn Ge under rapid decompression at different rates. High-resolution transmission electron microscopy reveals three distinct metastable phases with the distinctive nanostructures: an almost perfect st12 Ge crystal, nanosized bc8/r8 structures with amorphous boundaries, and amorphous Ge with nanosized clusters (0.8–2.5 nm). Fast in situ x-ray diffraction and x-ray absorption measurements indicate that these nanostructured products form in certain pressure regions via distinct kinetic pathways and are strongly correlated with nucleation rates and electronic transitions mediated by compression rate, temperature, and stress. This work provides deep insight into the controllable synthesis of metastable materials with unique crystal symmetries and nanostructures for potential applications.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Mei Li: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (equal); Project administration (equal); Validation (equal); Visualization (lead); Writing – original draft (lead); Writing – review & editing (equal). Xuqiang Liu: Data curation (equal); Writing – review & editing (equal). Sheng Jiang: Data curation (supporting); Methodology (supporting); Resources (supporting). Jesse S. Smith: Data curation (equal); Resources (supporting). Lihua Wang: Data curation (supporting); Resources (supporting). Shang Peng: Data curation (supporting); Methodology (supporting). Yongjin Chen: Formal analysis (supporting); Methodology (supporting). Yu Gong: Data curation (supporting); Resources (supporting). Chuanlong Lin: Conceptualization (lead); Data curation (equal); Formal analysis (equal); Funding acquisition (lead); Project administration (lead); Resources (lead); Supervision (lead); Validation (lead); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Wenge Yang: Funding acquisition (supporting); Resources (supporting); Supervision (supporting); Validation (supporting). Ho-Kwang Mao: Funding acquisition (supporting); Resources (supporting); Supervision (supporting); Validation (supporting).
    Author Contributions
    M.L. and C.L. conceived the research and co-supervised the project. M.L., X.L., and C.L. performed all the experiments, with assistance from S.J., J.S., L.W., and Y.G. M.L. and C.L. analyzed the data. S.P., Y.C., W.Y., and H.M. participated in discussions and made valuable comments on the manuscript. M.L. and C.L. co-wrote the manuscript. All authors discussed the results and contributed to writing the manuscript.
    M.L. and X.L. contributed equally to this work.
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    A. Mujica, A. Rubio, A. Muñoz, and R. J. Needs, “High-pressure phases of group-IV, III–V, and II–VI compounds,” Rev. Mod. Phys. 75, 863 (2003).10.1103/RevModPhys.75.863
    [2]
    L. C. Kelsall, M. Peña-Alvarez, M. Martinez-Canales, J. Binns, C. J. Pickard et al., “High-temperature phase transitions in dense germanium,” J. Chem. Phys. 154, 174702 (2021).10.1063/5.0047359
    [3]
    G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, “Origin of magic angles in twisted bilayer graphene,” Phys. Rev. Lett. 122, 106405 (2019).10.1103/physrevlett.122.106405
    [4]
    H. B. Cui, D. Graf, J. S. Brooks, and H. Kobayashi, “Pressure-dependent metallic and superconducting phases in a germanium artificial metal,” Phys. Rev. Lett. 102, 237001 (2009).10.1103/physrevlett.102.237001
    [5]
    H. Zhang, H. Liu, K. Wei, O. O. Kurakevych, Y. Le Godec et al., “BC8 silicon (Si-III) is a narrow-gap semiconductor,” Phys. Rev. Lett. 118, 146601 (2017).10.1103/physrevlett.118.146601
    [6]
    D. Ge, V. Domnich, and Y. Gogotsi, “Thermal stability of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 95, 2725–2731 (2004).10.1063/1.1642739
    [7]
    N. R. C. Corsini, Y. Zhang, W. R. Little, A. Karatutlu, O. Ersoy et al., “Pressure-induced amorphization and a new high density amorphous metallic phase in matrix-free Ge nanoparticles,” Nano Lett. 15, 7334–7340 (2015).10.1021/acs.nanolett.5b02627
    [8]
    S. Zhao, B. Kad, C. E. Wehrenberg, B. A. Remington, E. N. Hahn et al., “Generating gradient germanium nanostructures by shock-induced amorphization and crystallization,” Proc. Natl. Acad. Sci. U. S. A. 114, 9791–9796 (2017).10.1073/pnas.1708853114
    [9]
    T. C. Pandya, A. I. Shaikh, A. D. Bhatt et al., “Particle-size effect on the compressibility of nanocrystalline germanium,” AIP Conf. Proc. 1349, 413–414 (2011).10.1063/1.3605910
    [10]
    G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103, 113518 (2008).10.1063/1.2924417
    [11]
    Y. Xuan, L. Tan, B. Cheng, F. Zhang, X. Chen et al., “Pressure-induced phase transitions in nanostructured silicon,” J. Phys. Chem. C 124, 27089–27096 (2020).10.1021/acs.jpcc.0c07686
    [12]
    H. Tang, X. Yuan, Y. Cheng, H. Fei, F. Liu et al., “Synthesis of paracrystalline diamond,” Nature 599, 605–610 (2021).10.1038/s41586-021-04122-w
    [13]
    Y. Shang, Z. Liu, J. Dong, M. Yao, Z. Yang et al., “Ultrahard bulk amorphous carbon from collapsed fullerene,” Nature 599, 599–604 (2021).10.1038/s41586-021-03882-9
    [14]
    M. H. Bhat, V. Molinero, E. Soignard, V. C. Solomon, S. Sastry et al., “Vitrification of a monatomic metallic liquid,” Nature 448, 787–790 (2007).10.1038/nature06044
    [15]
    G. A. Voronin, C. Pantea, T. W. Zerda, J. Zhang, L. Wang et al., “In situ x-ray diffraction study of germanium at pressures up to 11 GPa and temperatures up to 950 K,” J. Phys. Chem. Solid. 64, 2113–2119 (2003).10.1016/s0022-3697(03)00278-6
    [16]
    S. Deshmukh, B. Haberl, S. Ruffell, P. Munroe, J. S. Williams et al., “Phase transformation pathways in amorphous germanium under indentation pressure,” J. Appl. Phys. 115, 153502 (2014).10.1063/1.4871190
    [17]
    O. I. Barkalov, V. G. Tissen, P. F. McMillan, M. Wilson, A. Sella et al., “Pressure-induced transformations and superconductivity of amorphous germanium,” Phys. Rev. B 82, 020507 (2010).10.1103/physrevb.82.020507
    [18]
    V. I. Ivashchenko, P. E. A. Turchi, and V. I. Shevchenko, “Simulations of indentation-induced phase transformations in crystalline and amorphous silicon,” Phys. Rev. B 78, 035205 (2008).10.1103/physrevb.78.035205
    [19]
    Y.-X. Zhao, F. Buehler, J. R. Sites, and I. L. Spain, “New metastable phases of silicon,” Solid State Commun. 59, 679–682 (1986).10.1016/0038-1098(86)90372-8
    [20]
    J. Crain, G. J. Ackland, J. R. Maclean, R. O. Piltz, P. D. Hatton et al., “Reversible pressure-induced structural transitions between metastable phases of silicon,” Phys. Rev. B 50, 13043 (1994).10.1103/physrevb.50.13043
    [21]
    B. Haberl, M. Guthrie, S. V. Sinogeikin, G. Shen, J. S. Williams et al., “Thermal evolution of the metastable R8 and BC8 polymorphs of silicon,” High Pressure Res. 35, 99–116 (2015).10.1080/08957959.2014.1003555
    [22]
    C. H. Bates, F. Dachille, and R. Roy, “High-pressure transitions of germanium and a new high-pressure form of germanium,” Science 147, 860–862 (1965).10.1126/science.147.3660.860
    [23]
    R. J. Nelmes, M. I. McMahon, N. G. Wright, D. R. Allan, and J. S. Loveday, “Stability and crystal structure of BC8 germanium,” Phys. Rev. B 48, 9883–9886 (1993).10.1103/physrevb.48.9883
    [24]
    B. D. Malone and M. L. Cohen, “Electronic structure, equation of state, and lattice dynamics of low-pressure Ge polymorphs,” Phys. Rev. B 86, 054101 (2012).10.1103/physrevb.86.054101
    [25]
    O. O. Kurakevych, Y. Le Godec, W. A. Crichton, J. Guignard, T. A. Strobel et al., “Synthesis of bulk bc8 silicon allotrope by direct transformation and reduced-pressure chemical pathways,” Inorg. Chem. 55, 8943–8950 (2016).10.1021/acs.inorgchem.6b01443
    [26]
    C. Lin, X. Liu, D. Yang, X. Li, J. S. Smith et al., “Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression,” Phys. Rev. Lett. 125, 155702 (2020).10.1103/physrevlett.125.155702
    [27]
    S. Wong, B. Haberl, B. C. Johnson, A. Mujica, M. Guthrie et al., “Formation of an R8-dominant Si material,” Phys. Rev. Lett. 122, 105701 (2019).10.1103/physrevlett.122.105701
    [28]
    B. Haberl, T. A. Strobel, and J. E. Bradby, “Pathways to exotic metastable silicon allotropes,” Appl. Phys. Rev. 3, 040808 (2016).10.1063/1.4962984
    [29]
    L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly et al., “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).10.1038/ncomms8555
    [30]
    X. Yan, D. Tan, X. Ren, W. Yang, D. He et al., “Anomalous compression behavior of germanium during phase transformation,” Appl. Phys. Lett. 106, 171902 (2015).10.1063/1.4919003
    [31]
    B. Haberl, M. Guthrie, B. D. Malone, J. S. Smith, S. V. Sinogeikin et al., “Controlled formation of metastable germanium polymorphs,” Phys. Rev. B 89, 144111 (2014).10.1103/physrevb.89.144111
    [32]
    B. C. Johnson, B. Haberl, S. Deshmukh, B. D. Malone, M. L. Cohen et al., “Evidence for the R8 phase of germanium,” Phys. Rev. Lett. 110, 085502 (2013).10.1103/physrevlett.110.085502
    [33]
    K. Gaál-Nagy, P. Pavone, and D. Strauch, “Ab initio study of the β-tin→Imma→sh phase transitions in silicon and germanium,” Phys. Rev. B 69, 134112 (2004).10.1103/PhysRevB.69.134112
    [34]
    M. Durandurdu, “Structural phase transition of germanium under uniaxial stress: An ab initio study,” Phys. Rev. B 71, 054112 (2005).10.1103/physrevb.71.054112
    [35]
    M. Durandurdu and D. A. Drabold, “First-order pressure-induced polyamorphism in germanium,” Phys. Rev. B 66, 041201 (2002).10.1103/physrevb.66.041201
    [36]
    Z. Zhao, H. Zhang, D. Y. Kim, W. Hu, E. S. Bullock et al., “Properties of the exotic metastable st12 germanium allotrope,” Nat. Commun. 8, 13909 (2017).10.1038/ncomms13909
    [37]
    J. S. Kasper and S. M. Richards, “The crystal structures of new forms of silicon and germanium,” Acta Crystallogr. 17, 752–755 (1964).10.1107/s0365110x64001840
    [38]
    R. Li, J. Liu, D. Popov, C. Park, Y. Meng et al., “Experimental observations of large changes in electron density distributions in β-Ge,” Phys. Rev. B 100, 224106 (2019).10.1103/physrevb.100.224106
    [39]
    R. Li, J. Liu, L. Bai, J. S. Tse, and G. Shen, “Pressure-induced changes in the electron density distribution in α-Ge near the α-β Transition,” Appl. Phys. Lett. 107, 072109 (2015).10.1063/1.4929368
    [40]
    M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte et al., “Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction,” Science 360, 1451–1455 (2018).10.1126/science.aar2058
    [41]
    D. S. Ivanov and L. V. Zhigilei, “Kinetic limit of heterogeneous melting in metals,” Phys. Rev. Lett. 98, 195701 (2007).10.1103/physrevlett.98.195701
    [42]
    F. Delogu, “Molecular dynamics simulations of homogeneous and heterogeneous melting scenarios in metals: Volume scaling and concentration of defects,” Phys. Rev. B 73, 184108 (2006).10.1103/physrevb.73.184108
    [43]
    Z. H. Jin, P. Gumbsch, K. Lu, and E. Ma, “Melting mechanisms at the limit of superheating,” Phys. Rev. Lett. 87, 055703 (2001).10.1103/physrevlett.87.055703
    [44]
    C. Lin, X. Liu, X. Yong, J. S. Tse, J. S. Smith et al., “Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice VII,” Proc. Natl. Acad. Sci. U. S. A. 117, 15437–15442 (2020).10.1073/pnas.2007959117
    [45]
    J. Frenkel, “A general theory of heterophase fluctuations and pretransition phenomena,” J. Chem. Phys. 7, 538–547 (1939).10.1063/1.1750484
    [46]
    R. Becker and W. Döring, “Kinetische behandlung der keimbildung in übersättigten dämpfen,” Ann. Phys. 416, 719–752 (1935).10.1002/andp.19354160806
    [47]
    M. Volmer and A. Weber, “Keimbildung in übersättigten gebilden,” Z. Phys. Chem. 119U, 277–301 (1926).10.1515/zpch-1926-11927
    [48]
    C. Lin, J. S. Smith, S. V. Sinogeikin, C. Park, Y. Kono et al., “Kinetics of the B1-B2 phase transition in KCl under rapid compression,” J. Appl. Phys. 119, 045902 (2016).10.1063/1.4940771
    [49]
    J. T. Wang, C. Chen, H. Mizuseki, and Y. Kawazoe, “Kinetic origin of divergent decompression pathways in silicon and germanium,” Phys. Rev. Lett. 110, 165503 (2013).10.1103/physrevlett.110.165503
    [50]
    S. Arrhenius, “Über die dissociationswärme und den Einfluss der temperatur auf den dissociationsgrad der elektrolyte,” Z. Phys. Chem. 4U, 96–116 (1889).
    [51]
    S. Arrhenius, “Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch Säuren,” Z. Phys. Chem. 4, 226–248 (1889).10.1515/ZPCH-1889-0116
    [52]
    K. Lu and Y. Li, “Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal,” Phys. Rev. Lett. 80, 4474–4477 (1998).10.1103/physrevlett.80.4474
    [53]
    Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y. Han, “Imaging the homogeneous nucleation during the melting of superheated colloidal crystals,” Science 338, 87–90 (2012).10.1126/science.1224763
    [54]
    W. Fan and X. G. Gong, “Superheated melting of grain boundaries,” Phys. Rev. B 72, 064121 (2005).10.1103/physrevb.72.064121
    [55]
    X. M. Bai and M. Li, “Nature and extent of melting in superheated solids: Liquid-solid coexistence model,” Phys. Rev. B 72, 052108 (2005).10.1103/physrevb.72.052108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return