| Citation: | Li Mei, Liu Xuqiang, Jiang Sheng, Smith Jesse S., Wang Lihua, Peng Shang, Chen Yongjin, Gong Yu, Lin Chuanlong, Yang Wenge, Mao Ho-Kwang. Formation of distinctive nanostructured metastable polymorphs mediated by kinetic transition pathways in germanium[J]. Matter and Radiation at Extremes, 2025, 10(3): 037801. doi: 10.1063/5.0256231 |
| [1] |
A. Mujica, A. Rubio, A. Muñoz, and R. J. Needs, “High-pressure phases of group-IV, III–V, and II–VI compounds,” Rev. Mod. Phys. 75, 863 (2003).10.1103/RevModPhys.75.863
|
| [2] |
L. C. Kelsall, M. Peña-Alvarez, M. Martinez-Canales, J. Binns, C. J. Pickard et al., “High-temperature phase transitions in dense germanium,” J. Chem. Phys. 154, 174702 (2021).10.1063/5.0047359
|
| [3] |
G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, “Origin of magic angles in twisted bilayer graphene,” Phys. Rev. Lett. 122, 106405 (2019).10.1103/physrevlett.122.106405
|
| [4] |
H. B. Cui, D. Graf, J. S. Brooks, and H. Kobayashi, “Pressure-dependent metallic and superconducting phases in a germanium artificial metal,” Phys. Rev. Lett. 102, 237001 (2009).10.1103/physrevlett.102.237001
|
| [5] |
H. Zhang, H. Liu, K. Wei, O. O. Kurakevych, Y. Le Godec et al., “BC8 silicon (Si-III) is a narrow-gap semiconductor,” Phys. Rev. Lett. 118, 146601 (2017).10.1103/physrevlett.118.146601
|
| [6] |
D. Ge, V. Domnich, and Y. Gogotsi, “Thermal stability of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 95, 2725–2731 (2004).10.1063/1.1642739
|
| [7] |
N. R. C. Corsini, Y. Zhang, W. R. Little, A. Karatutlu, O. Ersoy et al., “Pressure-induced amorphization and a new high density amorphous metallic phase in matrix-free Ge nanoparticles,” Nano Lett. 15, 7334–7340 (2015).10.1021/acs.nanolett.5b02627
|
| [8] |
S. Zhao, B. Kad, C. E. Wehrenberg, B. A. Remington, E. N. Hahn et al., “Generating gradient germanium nanostructures by shock-induced amorphization and crystallization,” Proc. Natl. Acad. Sci. U. S. A. 114, 9791–9796 (2017).10.1073/pnas.1708853114
|
| [9] |
T. C. Pandya, A. I. Shaikh, A. D. Bhatt et al., “Particle-size effect on the compressibility of nanocrystalline germanium,” AIP Conf. Proc. 1349, 413–414 (2011).10.1063/1.3605910
|
| [10] |
G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103, 113518 (2008).10.1063/1.2924417
|
| [11] |
Y. Xuan, L. Tan, B. Cheng, F. Zhang, X. Chen et al., “Pressure-induced phase transitions in nanostructured silicon,” J. Phys. Chem. C 124, 27089–27096 (2020).10.1021/acs.jpcc.0c07686
|
| [12] |
H. Tang, X. Yuan, Y. Cheng, H. Fei, F. Liu et al., “Synthesis of paracrystalline diamond,” Nature 599, 605–610 (2021).10.1038/s41586-021-04122-w
|
| [13] |
Y. Shang, Z. Liu, J. Dong, M. Yao, Z. Yang et al., “Ultrahard bulk amorphous carbon from collapsed fullerene,” Nature 599, 599–604 (2021).10.1038/s41586-021-03882-9
|
| [14] |
M. H. Bhat, V. Molinero, E. Soignard, V. C. Solomon, S. Sastry et al., “Vitrification of a monatomic metallic liquid,” Nature 448, 787–790 (2007).10.1038/nature06044
|
| [15] |
G. A. Voronin, C. Pantea, T. W. Zerda, J. Zhang, L. Wang et al., “In situ x-ray diffraction study of germanium at pressures up to 11 GPa and temperatures up to 950 K,” J. Phys. Chem. Solid. 64, 2113–2119 (2003).10.1016/s0022-3697(03)00278-6
|
| [16] |
S. Deshmukh, B. Haberl, S. Ruffell, P. Munroe, J. S. Williams et al., “Phase transformation pathways in amorphous germanium under indentation pressure,” J. Appl. Phys. 115, 153502 (2014).10.1063/1.4871190
|
| [17] |
O. I. Barkalov, V. G. Tissen, P. F. McMillan, M. Wilson, A. Sella et al., “Pressure-induced transformations and superconductivity of amorphous germanium,” Phys. Rev. B 82, 020507 (2010).10.1103/physrevb.82.020507
|
| [18] |
V. I. Ivashchenko, P. E. A. Turchi, and V. I. Shevchenko, “Simulations of indentation-induced phase transformations in crystalline and amorphous silicon,” Phys. Rev. B 78, 035205 (2008).10.1103/physrevb.78.035205
|
| [19] |
Y.-X. Zhao, F. Buehler, J. R. Sites, and I. L. Spain, “New metastable phases of silicon,” Solid State Commun. 59, 679–682 (1986).10.1016/0038-1098(86)90372-8
|
| [20] |
J. Crain, G. J. Ackland, J. R. Maclean, R. O. Piltz, P. D. Hatton et al., “Reversible pressure-induced structural transitions between metastable phases of silicon,” Phys. Rev. B 50, 13043 (1994).10.1103/physrevb.50.13043
|
| [21] |
B. Haberl, M. Guthrie, S. V. Sinogeikin, G. Shen, J. S. Williams et al., “Thermal evolution of the metastable R8 and BC8 polymorphs of silicon,” High Pressure Res. 35, 99–116 (2015).10.1080/08957959.2014.1003555
|
| [22] |
C. H. Bates, F. Dachille, and R. Roy, “High-pressure transitions of germanium and a new high-pressure form of germanium,” Science 147, 860–862 (1965).10.1126/science.147.3660.860
|
| [23] |
R. J. Nelmes, M. I. McMahon, N. G. Wright, D. R. Allan, and J. S. Loveday, “Stability and crystal structure of BC8 germanium,” Phys. Rev. B 48, 9883–9886 (1993).10.1103/physrevb.48.9883
|
| [24] |
B. D. Malone and M. L. Cohen, “Electronic structure, equation of state, and lattice dynamics of low-pressure Ge polymorphs,” Phys. Rev. B 86, 054101 (2012).10.1103/physrevb.86.054101
|
| [25] |
O. O. Kurakevych, Y. Le Godec, W. A. Crichton, J. Guignard, T. A. Strobel et al., “Synthesis of bulk bc8 silicon allotrope by direct transformation and reduced-pressure chemical pathways,” Inorg. Chem. 55, 8943–8950 (2016).10.1021/acs.inorgchem.6b01443
|
| [26] |
C. Lin, X. Liu, D. Yang, X. Li, J. S. Smith et al., “Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression,” Phys. Rev. Lett. 125, 155702 (2020).10.1103/physrevlett.125.155702
|
| [27] |
S. Wong, B. Haberl, B. C. Johnson, A. Mujica, M. Guthrie et al., “Formation of an R8-dominant Si material,” Phys. Rev. Lett. 122, 105701 (2019).10.1103/physrevlett.122.105701
|
| [28] |
B. Haberl, T. A. Strobel, and J. E. Bradby, “Pathways to exotic metastable silicon allotropes,” Appl. Phys. Rev. 3, 040808 (2016).10.1063/1.4962984
|
| [29] |
L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly et al., “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).10.1038/ncomms8555
|
| [30] |
X. Yan, D. Tan, X. Ren, W. Yang, D. He et al., “Anomalous compression behavior of germanium during phase transformation,” Appl. Phys. Lett. 106, 171902 (2015).10.1063/1.4919003
|
| [31] |
B. Haberl, M. Guthrie, B. D. Malone, J. S. Smith, S. V. Sinogeikin et al., “Controlled formation of metastable germanium polymorphs,” Phys. Rev. B 89, 144111 (2014).10.1103/physrevb.89.144111
|
| [32] |
B. C. Johnson, B. Haberl, S. Deshmukh, B. D. Malone, M. L. Cohen et al., “Evidence for the R8 phase of germanium,” Phys. Rev. Lett. 110, 085502 (2013).10.1103/physrevlett.110.085502
|
| [33] |
K. Gaál-Nagy, P. Pavone, and D. Strauch, “Ab initio study of the β-tin→Imma→sh phase transitions in silicon and germanium,” Phys. Rev. B 69, 134112 (2004).10.1103/PhysRevB.69.134112
|
| [34] |
M. Durandurdu, “Structural phase transition of germanium under uniaxial stress: An ab initio study,” Phys. Rev. B 71, 054112 (2005).10.1103/physrevb.71.054112
|
| [35] |
M. Durandurdu and D. A. Drabold, “First-order pressure-induced polyamorphism in germanium,” Phys. Rev. B 66, 041201 (2002).10.1103/physrevb.66.041201
|
| [36] |
Z. Zhao, H. Zhang, D. Y. Kim, W. Hu, E. S. Bullock et al., “Properties of the exotic metastable st12 germanium allotrope,” Nat. Commun. 8, 13909 (2017).10.1038/ncomms13909
|
| [37] |
J. S. Kasper and S. M. Richards, “The crystal structures of new forms of silicon and germanium,” Acta Crystallogr. 17, 752–755 (1964).10.1107/s0365110x64001840
|
| [38] |
R. Li, J. Liu, D. Popov, C. Park, Y. Meng et al., “Experimental observations of large changes in electron density distributions in β-Ge,” Phys. Rev. B 100, 224106 (2019).10.1103/physrevb.100.224106
|
| [39] |
R. Li, J. Liu, L. Bai, J. S. Tse, and G. Shen, “Pressure-induced changes in the electron density distribution in α-Ge near the α-β Transition,” Appl. Phys. Lett. 107, 072109 (2015).10.1063/1.4929368
|
| [40] |
M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte et al., “Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction,” Science 360, 1451–1455 (2018).10.1126/science.aar2058
|
| [41] |
D. S. Ivanov and L. V. Zhigilei, “Kinetic limit of heterogeneous melting in metals,” Phys. Rev. Lett. 98, 195701 (2007).10.1103/physrevlett.98.195701
|
| [42] |
F. Delogu, “Molecular dynamics simulations of homogeneous and heterogeneous melting scenarios in metals: Volume scaling and concentration of defects,” Phys. Rev. B 73, 184108 (2006).10.1103/physrevb.73.184108
|
| [43] |
Z. H. Jin, P. Gumbsch, K. Lu, and E. Ma, “Melting mechanisms at the limit of superheating,” Phys. Rev. Lett. 87, 055703 (2001).10.1103/physrevlett.87.055703
|
| [44] |
C. Lin, X. Liu, X. Yong, J. S. Tse, J. S. Smith et al., “Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice VII,” Proc. Natl. Acad. Sci. U. S. A. 117, 15437–15442 (2020).10.1073/pnas.2007959117
|
| [45] |
J. Frenkel, “A general theory of heterophase fluctuations and pretransition phenomena,” J. Chem. Phys. 7, 538–547 (1939).10.1063/1.1750484
|
| [46] |
R. Becker and W. Döring, “Kinetische behandlung der keimbildung in übersättigten dämpfen,” Ann. Phys. 416, 719–752 (1935).10.1002/andp.19354160806
|
| [47] |
M. Volmer and A. Weber, “Keimbildung in übersättigten gebilden,” Z. Phys. Chem. 119U, 277–301 (1926).10.1515/zpch-1926-11927
|
| [48] |
C. Lin, J. S. Smith, S. V. Sinogeikin, C. Park, Y. Kono et al., “Kinetics of the B1-B2 phase transition in KCl under rapid compression,” J. Appl. Phys. 119, 045902 (2016).10.1063/1.4940771
|
| [49] |
J. T. Wang, C. Chen, H. Mizuseki, and Y. Kawazoe, “Kinetic origin of divergent decompression pathways in silicon and germanium,” Phys. Rev. Lett. 110, 165503 (2013).10.1103/physrevlett.110.165503
|
| [50] |
S. Arrhenius, “Über die dissociationswärme und den Einfluss der temperatur auf den dissociationsgrad der elektrolyte,” Z. Phys. Chem. 4U, 96–116 (1889).
|
| [51] |
S. Arrhenius, “Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch Säuren,” Z. Phys. Chem. 4, 226–248 (1889).10.1515/ZPCH-1889-0116
|
| [52] |
K. Lu and Y. Li, “Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal,” Phys. Rev. Lett. 80, 4474–4477 (1998).10.1103/physrevlett.80.4474
|
| [53] |
Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y. Han, “Imaging the homogeneous nucleation during the melting of superheated colloidal crystals,” Science 338, 87–90 (2012).10.1126/science.1224763
|
| [54] |
W. Fan and X. G. Gong, “Superheated melting of grain boundaries,” Phys. Rev. B 72, 064121 (2005).10.1103/physrevb.72.064121
|
| [55] |
X. M. Bai and M. Li, “Nature and extent of melting in superheated solids: Liquid-solid coexistence model,” Phys. Rev. B 72, 052108 (2005).10.1103/physrevb.72.052108
|