Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 3
May  2025
Turn off MathJax
Article Contents
Wang Zhenyu, Luo Xiaoshan, Wang Qingchang, Ge Heng, Gao Pengyue, Zhang Wei, Lv Jian, Wang Yanchao. Advances in high-pressure materials discovery enabled by machine learning[J]. Matter and Radiation at Extremes, 2025, 10(3): 033801. doi: 10.1063/5.0255385
Citation: Wang Zhenyu, Luo Xiaoshan, Wang Qingchang, Ge Heng, Gao Pengyue, Zhang Wei, Lv Jian, Wang Yanchao. Advances in high-pressure materials discovery enabled by machine learning[J]. Matter and Radiation at Extremes, 2025, 10(3): 033801. doi: 10.1063/5.0255385

Advances in high-pressure materials discovery enabled by machine learning

doi: 10.1063/5.0255385
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zhangw_bxx@jlu.edu.cn and lvjian@jlu.edu.cn
  • Received Date: 2024-12-29
  • Accepted Date: 2025-02-24
  • Available Online: 2025-11-28
  • Publish Date: 2025-05-01
  • Crystal structure prediction (CSP) is a foundational computational technique for determining the atomic arrangements of crystalline materials, especially under high-pressure conditions. While CSP plays a critical role in materials science, traditional approaches often encounter significant challenges related to computational efficiency and scalability, particularly when applied to complex systems. Recent advances in machine learning (ML) have shown tremendous promise in addressing these limitations, enabling the rapid and accurate prediction of crystal structures across a wide range of chemical compositions and external conditions. This review provides a concise overview of recent progress in ML-assisted CSP methodologies, with a particular focus on machine learning potentials and generative models. By critically analyzing these advances, we highlight the transformative impact of ML in accelerating materials discovery, enhancing computational efficiency, and broadening the applicability of CSP. Additionally, we discuss emerging opportunities and challenges in this rapidly evolving field.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Zhenyu Wang: Investigation (equal); Writing – original draft (equal); Writing – review & editing (equal). Xiaoshan Luo: Investigation (equal); Writing – original draft (equal); Writing – review & editing (equal). Qingchang Wang: Investigation (equal); Writing – review & editing (equal). Heng Ge: Investigation (equal); Writing – review & editing (equal). Pengyue Gao: Investigation (equal); Writing – review & editing (equal). Wei Zhang: Conceptualization (equal); Supervision (equal); Writing – review & editing (equal). Jian Lv: Conceptualization (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Yanchao Wang: Conceptualization (equal); Supervision (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
    [2]
    M. Xu, Y. Li, and Y. Ma, “Materials by design at high pressures,” Chem. Sci. 13, 329 (2022).10.1039/d1sc04239d
    [3]
    H.-K. Mao, B. Chen, J. Chen, K. Li, J.-F. Lin et al., “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59 (2016).10.1016/j.mre.2016.01.005
    [4]
    Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma et al., “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510, 250 (2014).10.1038/nature13381
    [5]
    H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990 (2017).10.1073/pnas.1704505114
    [6]
    F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu et al., “Hydrogen clathrate structures in rare Earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
    [7]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
    [8]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
    [9]
    C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys. Condens. Matter 23, 053201 (2011).10.1088/0953-8984/23/5/053201
    [10]
    M. T. Oakley, R. L. Johnston, and D. J. Wales, “Symmetrisation schemes for global optimisation of atomic clusters,” Phys. Chem. Chem. Phys. 15, 3965 (2013).10.1039/c3cp44332a
    [11]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Calypso: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063 (2012).10.1016/j.cpc.2012.05.008
    [12]
    X. Shao, J. Lv, P. Liu, S. Shao, P. Gao et al., “A symmetry-orientated divide-and-conquer method for crystal structure prediction,” J. Chem. Phys. 156, 014105 (2022).10.1063/5.0074677
    [13]
    S. Goedecker, “Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems,” J. Chem. Phys. 120, 9911 (2004).10.1063/1.1724816
    [14]
    C. W. Glass, A. R. Oganov, and N. Hansen, “USPEX—Evolutionary crystal structure prediction,” Comput. Phys. Commun. 175, 713 (2006).10.1016/j.cpc.2006.07.020
    [15]
    K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun et al., “A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search,” Sci. Bull. 63, 817 (2018).10.1016/j.scib.2018.05.027
    [16]
    J. Wang, H. Gao, Y. Han, C. Ding, S. Pan et al., “MAGUS: Machine learning and graph theory assisted universal structure searcher,” Natl. Sci. Rev. 10, nwad128 (2023).10.1093/nsr/nwad128
    [17]
    D. C. Lonie and E. Zurek, “XtalOpt: An open-source evolutionary algorithm for crystal structure prediction,” Comput. Phys. Commun. 182, 372 (2011).10.1016/j.cpc.2010.07.048
    [18]
    Y. Wang, J. Lv, P. Gao, and Y. Ma, “Crystal structure prediction via efficient sampling of the potential energy surface,” Acc. Chem. Res. 55, 2068 (2022).10.1021/acs.accounts.2c00243
    [19]
    J. Lv, Y. Wang, L. Zhu, and Y. Ma, “Predicted novel high-pressure phases of lithium,” Phys. Rev. Lett. 106, 015503 (2011).10.1103/physrevlett.106.015503
    [20]
    M. Marqués, M. I. McMahon, E. Gregoryanz, M. Hanfland, C. L. Guillaume et al., “Crystal structures of dense lithium: A metal-semiconductor-metal transition,” Phys. Rev. Lett. 106, 095502 (2011).10.1103/physrevlett.106.095502
    [21]
    Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan et al., “Transparent dense sodium,” Nature 458, 182 (2009).10.1038/nature07786
    [22]
    H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109, 6463 (2012).10.1073/pnas.1118168109
    [23]
    L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang et al., “High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa,” Phys. Rev. Lett. 128, 167001 (2022).10.1103/physrevlett.128.167001
    [24]
    [25]
    [26]
    J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, “Recent advances and applications of machine learning in solid-state materials science,” npj Comput. Mater. 5, 83 (2019).10.1038/s41524-019-0221-0
    [27]
    G. Wang, C. Wang, X. Zhang, Z. Li, J. Zhou et al., “Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations,” iScience 27, 109673 (2024).10.1016/j.isci.2024.109673
    [28]
    L. Chuan-Nan, L. Han-Pu, Z. Bai-Qing, W. Su-Huai, and Z. Xie, “Machine learning assisted crystal structure prediction made simple,” J. Mater. Inf. 4, 15 (2024).10.20517/jmi.2024.18
    [29]
    [30]
    [31]
    J. Behler, “Four generations of high-dimensional neural network potentials,” Chem. Rev. 121, 10037 (2021).10.1021/acs.chemrev.0c00868
    [32]
    J. Behler and M. Parrinello, “Generalized neural-network representation of high-dimensional potential-energy surfaces,” Phys. Rev. Lett. 98, 146401 (2007).10.1103/physrevlett.98.146401
    [33]
    A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons,” Phys. Rev. Lett. 104, 136403 (2010).10.1103/physrevlett.104.136403
    [34]
    A. V. Shapeev, “Moment tensor potentials: A class of systematically improvable interatomic potentials,” Multiscale Model. Simul. 14, 1153 (2016).10.1137/15m1054183
    [35]
    A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, “Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials,” J. Comput. Phys. 285, 316 (2015).10.1016/j.jcp.2014.12.018
    [36]
    R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic potentials,” Phys. Rev. B 99, 014104 (2019).10.1103/physrevb.99.014104
    [37]
    Y. Zhang, C. Hu, and B. Jiang, “Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation,” J. Phys. Chem. Lett. 10, 4962 (2019).10.1021/acs.jpclett.9b02037
    [38]
    [39]
    F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Trans. Neural Netw. 20, 61 (2009).10.1109/tnn.2008.2005605
    [40]
    K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, “Quantum-chemical insights from deep tensor neural networks,” Nat. Commun. 8, 13890 (2017).10.1038/ncomms13890
    [41]
    T. Xie and J. C. Grossman, “Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties,” Phys. Rev. Lett. 120, 145301 (2018).10.1103/physrevlett.120.145301
    [42]
    [43]
    O. T. Unke and M. Meuwly, “PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges,” J. Chem. Theor. Comput. 15, 3678 (2019).10.1021/acs.jctc.9b00181
    [44]
    S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa et al., “E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials,” Nat. Commun. 13, 2453 (2022).10.1038/s41467-022-29939-5
    [45]
    [46]
    [47]
    C. Chen and S. P. Ong, “A universal graph deep learning interatomic potential for the periodic table,” Nat. Comput. Sci. 2, 718 (2022).10.1038/s43588-022-00349-3
    [48]
    B. Deng, P. Zhong, K. Jun, J. Riebesell, K. Han et al., “CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling,” Nat. Mach. Intell. 5, 1031 (2023).10.1038/s42256-023-00716-3
    [49]
    [50]
    [51]
    [52]
    [53]
    [54]
    [55]
    J. Wang, Y. Wang, H. Zhang, Z. Yang, Z. Liang et al., “E(n)-Equivariant cartesian tensor message passing interatomic potential,” Nat. Commun. 15, 7607 (2024).10.1038/s41467-024-51886-6
    [56]
    [57]
    [58]
    [59]
    [60]
    [61]
    [62]
    S. Takamoto, C. Shinagawa, D. Motoki, K. Nakago, W. Li et al., “Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements,” Nat. Commun. 13, 2991 (2022).10.1038/s41467-022-30687-9
    [63]
    A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards et al., “Commentary: The materials Project: A materials genome approach to accelerating materials innovation,” APL Mater. 1, 011002 (2013).10.1063/1.4812323
    [64]
    [65]
    D. Zhang, X. Liu, X. Zhang, C. Zhang, C. Cai et al., “DPA-2: A large atomic model as a multi-task learner,” npj Comput. Mater. 10, 293 (2024).10.1038/s41524-024-01493-2
    [66]
    [67]
    [68]
    A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon et al., “Scaling deep learning for materials discovery,” Nature 624, 80 (2023).10.1038/s41586-023-06735-9
    [69]
    [70]
    [71]
    Y. Park, J. Kim, S. Hwang, and S. Han, “Scalable parallel algorithm for graph neural network interatomic potentials in molecular dynamics simulations,” J. Chem. Theor. Comput. 20, 4857 (2024).10.1021/acs.jctc.4c00190
    [72]
    A. Bochkarev, Y. Lysogorskiy, and R. Drautz, “Graph atomic cluster expansion for semilocal interactions beyond equivariant message passing,” Phys. Rev. X 14, 021036 (2024).10.1103/physrevx.14.021036
    [73]
    V. L. Deringer, G. Csányi, and D. M. Proserpio, “Extracting crystal chemistry from amorphous carbon structures,” ChemPhysChem 18, 873 (2017).10.1002/cphc.201700151
    [74]
    H. Wang, Y. Zhang, L. Zhang, and H. Wang, “Crystal structure prediction of binary alloys via deep potential,” Front. Chem. 8, 589795 (2020).10.3389/fchem.2020.589795
    [75]
    C. Shang and Z.-P. Liu, “Stochastic surface walking method for structure prediction and pathway searching,” J. Chem. Theor. Comput. 9, 1838 (2013).10.1021/ct301010b
    [76]
    C. Shang, X.-J. Zhang, and Z.-P. Liu, “Stochastic surface walking method for crystal structure and phase transition pathway prediction,” Phys. Chem. Chem. Phys. 16, 17845 (2014).10.1039/c4cp01485e
    [77]
    S.-D. Huang, C. Shang, P.-L. Kang, and Z.-P. Liu, “Atomic structure of boron resolved using machine learning and global sampling,” Chem. Sci. 9, 8644 (2018).10.1039/c8sc03427c
    [78]
    Q. Tong, P. Gao, H. Liu, Y. Xie, J. Lv et al., “Combining machine learning potential and structure prediction for accelerated materials design and discovery,” J. Phys. Chem. Lett. 11, 8710 (2020).10.1021/acs.jpclett.0c02357
    [79]
    V. L. Deringer, C. J. Pickard, and G. Csányi, “Data-driven learning of total and local energies in elemental boron,” Phys. Rev. Lett. 120, 156001 (2018).10.1103/physrevlett.120.156001
    [80]
    V. L. Deringer, D. M. Proserpio, G. Csányi, and C. J. Pickard, “Data-driven learning and prediction of inorganic crystal structures,” Faraday Discuss. 211, 45 (2018).10.1039/c8fd00034d
    [81]
    N. Bernstein, G. Csányi, and V. L. Deringer, “De novo exploration and self-guided learning of potential-energy surfaces,” npj Comput. Mater. 5, 99 (2019).10.1038/s41524-019-0236-6
    [82]
    Q. Tong, L. Xue, J. Lv, Y. Wang, and Y. Ma, “Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface,” Faraday Discuss. 211, 31 (2018).10.1039/c8fd00055g
    [83]
    Q. Yang, J. Lv, Q. Tong, X. Du, Y. Wang et al., “Hard and superconducting cubic boron phase via swarm-intelligence structural prediction driven by a machine-learning potential,” Phys. Rev. B 103, 024505 (2021).10.1103/physrevb.103.024505
    [84]
    E. V. Podryabinkin and A. V. Shapeev, “Active learning of linearly parametrized interatomic potentials,” Comput. Mater. Sci. 140, 171 (2017).10.1016/j.commatsci.2017.08.031
    [85]
    E. V. Podryabinkin, E. V. Tikhonov, A. V. Shapeev, and A. R. Oganov, “Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning,” Phys. Rev. B 99, 064114 (2019).10.1103/physrevb.99.064114
    [86]
    K. Gubaev, E. V. Podryabinkin, G. L. W. Hart, and A. V. Shapeev, “Accelerating high-throughput searches for new alloys with active learning of interatomic potentials,” Comput. Mater. Sci. 156, 148 (2019).10.1016/j.commatsci.2018.09.031
    [87]
    G. Cheng, X.-G. Gong, and W.-J. Yin, “Crystal structure prediction by combining graph network and optimization algorithm,” Nat. Commun. 13, 1492 (2022).10.1038/s41467-022-29241-4
    [88]
    C. J. Pickard, “Ephemeral data derived potentials for random structure search,” Phys. Rev. B 106, 014102 (2022).10.1103/physrevb.106.014102
    [89]
    P. T. Salzbrenner, S. H. Joo, L. J. Conway, P. I. C. Cooke, B. Zhu et al., “Developments and further applications of ephemeral data derived potentials,” J. Chem. Phys. 159, 144801 (2023).10.1063/5.0158710
    [90]
    C. Liu, J. Shi, H. Gao, J. Wang, Y. Han et al., “Mixed coordination silica at megabar pressure,” Phys. Rev. Lett. 126, 035701 (2021).10.1103/physrevlett.126.035701
    [91]
    S. Pan, T. Huang, A. Vazan, Z. Liang, C. Liu et al., “Magnesium oxide-water compounds at megabar pressure and implications on planetary interiors,” Nat. Commun. 14, 1165 (2023).10.1038/s41467-023-36802-8
    [92]
    X. Wang, Y. Wang, J. Wang, S. Pan, Q. Lu et al., “Pressure stabilized lithium-aluminum compounds with both superconducting and superionic behaviors,” Phys. Rev. Lett. 129, 246403 (2022).10.1103/physrevlett.129.246403
    [93]
    X. Wang, Z. Wang, P. Gao, C. Zhang, J. Lv et al., “Data-driven prediction of complex crystal structures of dense lithium,” Nat. Commun. 14, 2924 (2023).10.1038/s41467-023-38650-y
    [94]
    Z. Wang, X. Wang, X. Luo, P. Gao, Y. Sun et al., “Concurrent learning scheme for crystal structure prediction,” Phys. Rev. B 109, 094117 (2024).10.1103/physrevb.109.094117
    [95]
    P. Friederich, F. Häse, J. Proppe, and A. Aspuru-Guzik, “Machine-learned potentials for next-generation matter simulations,” Nat. Mater. 20, 750 (2021).10.1038/s41563-020-0777-6
    [96]
    V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti et al., “Gaussian process regression for materials and molecules,” Chem. Rev. 121, 10073 (2021).10.1021/acs.chemrev.1c00022
    [97]
    A. Nouira, N. Sokolovska, and J.-C. Crivello, “CrystalGAN: Learning to discover crystallographic structures with generative adversarial networks,” in Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI, 2018).
    [98]
    K. Ryan, J. Lengyel, and M. Shatruk, “Crystal structure prediction via deep learning,” J. Am. Chem. Soc. 140, 10158 (2018).10.1021/jacs.8b03913
    [99]
    [100]
    J. Noh, J. Kim, H. S. Stein, B. Sanchez-Lengeling, J. M. Gregoire et al., “Inverse design of solid-state materials via a continuous representation,” Matter 1, 1370 (2019).10.1016/j.matt.2019.08.017
    [101]
    C. J. Court, B. Yildirim, A. Jain, and J. M. Cole, “3-D inorganic crystal structure generation and property prediction via representation learning,” J. Chem. Inf. Model. 60, 4518 (2020).10.1021/acs.jcim.0c00464
    [102]
    B. Kim, S. Lee, and J. Kim, “Inverse design of porous materials using artificial neural networks,” Sci. Adv. 6, eaax9324 (2020).10.1126/sciadv.aax9324
    [103]
    S. Kim, J. Noh, G. H. Gu, A. Aspuru-Guzik, and Y. Jung, “Generative adversarial networks for crystal structure prediction,” ACS Cent. Sci. 6, 1412 (2020).10.1021/acscentsci.0c00426
    [104]
    I.-H. Lee and K. J. Chang, “Crystal structure prediction in a continuous representative space,” Comput. Mater. Sci. 194, 110436 (2021).10.1016/j.commatsci.2021.110436
    [105]
    Y. Zhao, M. Al-Fahdi, M. Hu, E. M. D. Siriwardane, Y. Song et al., “High-throughput discovery of novel cubic crystal materials using deep generative neural networks,” Adv. Sci. 8, 2100566 (2021).10.1002/advs.202100566
    [106]
    T. Long, N. M. Fortunato, I. Opahle, Y. Zhang, I. Samathrakis et al., “Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures,” npj Comput. Mater. 7, 66 (2021).10.1038/s41524-021-00526-4
    [107]
    Z. Ren, S. I. P. Tian, J. Noh, F. Oviedo, G. Xing et al., “An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties,” Matter 5, 314 (2022).10.1016/j.matt.2021.11.032
    [108]
    Y. Zhao, E. M. D. Siriwardane, Z. Wu, N. Fu, M. Al-Fahdi et al., “Physics guided deep learning for generative design of crystal materials with symmetry constraints,” npj Comput. Mater. 9, 38 (2023).10.1038/s41524-023-00987-9
    [109]
    J. Park, A. P. S. Gill, S. M. Moosavi, and J. Kim, “Inverse design of porous materials: A diffusion model approach,” J. Mater. Chem. A 12, 6507 (2024).10.1039/d3ta06274k
    [110]
    M. Alverson, S. G. Baird, R. Murdock, E. S.-H. Ho et al., “Generative adversarial networks and diffusion models in material discovery,” Digit. Discov. 3, 62 (2024).10.1039/d3dd00137g
    [111]
    [112]
    [113]
    R. Zhu, W. Nong, S. Yamazaki, and K. Hippalgaonkar, “WyCryst: Wyckoff inorganic crystal generator framework,” Matter 7, 3469 (2024).10.1016/j.matt.2024.05.042
    [114]
    [115]
    [116]
    M. Yang, K. Cho, A. Merchant, P. Abbeel, D. Schuurmans et al., “Scalable diffusion for materials generation,” in Advances in Neural Information Processing Systems (NeurIPS) (MIT Press, 2023).
    [117]
    [118]
    R. Jiao, W. Huang, P. Lin, J. Han, P. Chen et al., “Crystal structure prediction by joint equivariant diffusion,” in Advances in Neural Information Processing Systems (NeurIPS) (MIT Press, 2023).
    [119]
    [120]
    C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton et al., “A generative model for inorganic materials design,” Nature (published online) (2025).10.1038/s41586-025-08628-5
    [121]
    [122]
    X. Luo, Z. Wang, P. Gao, J. Lv, Y. Wang et al., “Deep learning generative model for crystal structure prediction,” npj Comput. Mater. 10, 254 (2024).10.1038/s41524-024-01443-y
    [123]
    [124]
    [125]
    [126]
    T. M. Nguyen, S. Tawfik, r. Tran, S. Gupta, S. Rana et al., “Hierarchical GFlownet for crystal structure generation,” in Advances in Neural Information Processing Systems (NeurIPS) (MIT Press, 2023).
    [127]
    D. Levy, S. S. Panigrahi, S.-O. Kaba, Q. Zhu, M. Galkin et al., “SymmCD: Symmetry-Preserving crystal generation with diffusion models,” in AI for Accelerated Materials Discovery - NeurIPS (MIT Press, 2024).
    [128]
    C.-Y. Ye, H.-M. Weng, and Q.-S. Wu, “Con-CDVAE: A method for the conditional generation of crystal structures,” Comput. Mater. Today 1, 100003 (2024).10.1016/j.commt.2024.100003
    [129]
    H. Xiao, R. Li, X. Shi, Y. Chen, L. Zhu et al., “An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning,” Nat. Commun. 14, 7027 (2023).10.1038/s41467-023-42870-7
    [130]
    L. M. Antunes, K. T. Butler, and R. Grau-Crespo, “Crystal structure generation with autoregressive large language modeling,” Nat. Commun. 15, 10570 (2024).10.1038/s41467-024-54639-7
    [131]
    [132]
    [133]
    [134]
    [135]
    [136]
    [137]
    A. Sriram, B. K. Miller, R. T. Q. Chen, and B. M. Wood, “FlowLLM: Flow matching for material generation with large language models as base distributions,” in Advances in Neural Information Processing Systems (NeurIPS) (MIT Press, 2024).
    [138]
    K. Choudhary, “AtomGPT: Atomistic generative pretrained transformer for forward and inverse materials design,” J. Phys. Chem. Lett. 15, 6909 (2024).10.1021/acs.jpclett.4c01126
    [139]
    [140]
    K. Yan, X. Li, H. Ling, K. Ashen, C. Edwards et al., “Invariant tokenization of crystalline materials for language model enabled generation,” in Advances in Neural Information Processing Systems (NeurIPS) (MIT Press, 2024).
    [141]
    D. Maoutsa, S. Reich, and M. Opper, “Interacting particle solutions of Fokker–Planck equations through gradient–log–density estimation,” Entropy 22, 802 (2020).10.3390/e22080802
    [142]
    [143]
    [144]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return