Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
Xu Shirui, Pan Zhuo, Gao Ying, Zhao Jiarui, Chen Shiyou, Mei Zhusong, Chen Xun, Peng Ziyang, Liu Xuan, Liang Yulan, Xu Tianqi, Song Tan, Wu Qingfan, Zhang Yujia, Liu Zhipeng, Zhang Zihao, Chen Haoran, Han Qihang, Shen Jundong, Hua Chenghao, Zhu Kun, Zhao Yanying, Lin Chen, Yan Xueqing, Ma Wenjun. Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets[J]. Matter and Radiation at Extremes, 2025, 10(2): 027202. doi: 10.1063/5.0255211
Citation: Xu Shirui, Pan Zhuo, Gao Ying, Zhao Jiarui, Chen Shiyou, Mei Zhusong, Chen Xun, Peng Ziyang, Liu Xuan, Liang Yulan, Xu Tianqi, Song Tan, Wu Qingfan, Zhang Yujia, Liu Zhipeng, Zhang Zihao, Chen Haoran, Han Qihang, Shen Jundong, Hua Chenghao, Zhu Kun, Zhao Yanying, Lin Chen, Yan Xueqing, Ma Wenjun. Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets[J]. Matter and Radiation at Extremes, 2025, 10(2): 027202. doi: 10.1063/5.0255211

Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets

doi: 10.1063/5.0255211
More Information
  • Author Bio:

    Electronic mail: ying_gao@pku.edu.cn

    Electronic mail: jrzhao@pku.edu.cn

  • Corresponding author: c)Author to whom correspondence should be addressed: wenjun.ma@pku.edu.cn
  • Received Date: 2024-12-27
  • Accepted Date: 2025-01-08
  • Available Online: 2025-03-01
  • Publish Date: 2025-03-01
  • Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities. However, reliable diagnosis of the focal spot and peak intensity faces huge challenges. In this work, we demonstrate for the first time that the coherent radiation farfield patterns from laser–foil interactions can serve as an in situ, real-time, and easy-to-implement diagnostic for an ultraintense laser focus. The laser-driven electron sheets, curved by the spatially varying laser field and leaving the targets at nearly the speed of light, produce doughnut-shaped patterns depending on the shapes of the focal spot and the absolute laser intensities. Assisted by particle-in-cell simulations, we can achieve measurements of the intensity and the focal spot, and provide immediate feedback to optimize the focal spots for extremely high intensity.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Shirui Xu: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). Zhuo Pan: Investigation (equal). Ying Gao: Investigation (lead); Supervision (lead). Jiarui Zhao: Funding acquisition (lead); Investigation (equal); Supervision (lead). Shiyou Chen: Investigation (equal). Zhusong Mei: Investigation (equal). Xun Chen: Investigation (equal). Ziyang Peng: Investigation (equal). Xuan Liu: Investigation (equal). Yulan Liang: Investigation (equal). Tianqi Xu: Investigation (equal). Tan Song: Investigation (equal). Qingfan Wu: Investigation (equal). Yujia Zhang: Investigation (equal). Zhipeng Liu: Investigation (equal). Zihao Zhang: Investigation (equal). Haoran Chen: Investigation (equal). Qihang Han: Investigation (equal). Jundong Shen: Investigation (equal). Chenghao Hua: Investigation (equal). Kun Zhu: Investigation (equal). Yanying Zhao: Investigation (equal); Resources (lead). Chen Lin: Investigation (equal). Xueqing Yan: Investigation (equal); Resources (lead); Supervision (lead). Wenjun Ma: Conceptualization (equal); Funding acquisition (lead); Investigation (equal); Methodology (equal); Supervision (lead); Validation (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    M. Alkhimova, I. Skobelev, T. Pikuz, S. Ryazantsev, H. Sakaki et al., “Ultrarelativistic Fe plasma with GJ/cm3 energy density created by femtosecond laser pulses,” Matter Radiat. Extremes 9, 067205 (2024).10.1063/5.0212545
    [2]
    G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).10.1103/revmodphys.78.309
    [3]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/revmodphys.81.1229
    [4]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).10.1103/revmodphys.85.751
    [5]
    T. Ziegler, I. Göthel, S. Assenbaum, C. Bernert, F.-E. Brack et al., “Laser-driven high-energy proton beams from cascaded acceleration regimes,” Nat. Phys. 20, 1211–1216 (2024).10.1038/s41567-024-02505-0
    [6]
    A. Gonoskov, T. G. Blackburn, M. Marklund, and S. S. Bulanov, “Charged particle motion and radiation in strong electromagnetic fields,” Rev. Mod. Phys. 94, 045001 (2022).10.1103/revmodphys.94.045001
    [7]
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/revmodphys.84.1177
    [8]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J. C. F. Chanteloup et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [9]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee et al., “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
    [10]
    G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).10.1038/nphoton.2016.140
    [11]
    J. Gao, “Laser intensity measurement by Thomson scattering,” Appl. Phys. Lett. 88, 091105 (2006).10.1063/1.2180869
    [12]
    C. Z. He, A. Longman, J. A. Pérez-Hernández, M. de Marco, C. Salgado et al., “Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers,” Opt Express 27, 30020–30030 (2019).10.1364/oe.27.030020
    [13]
    O. Har-Shemesh and A. Di Piazza, “Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering,” Opt Lett. 37, 1352–1354 (2012).10.1364/ol.37.001352
    [14]
    C. N. Harvey, “In situ characterization of ultraintense laser pulses,” Phys. Rev. Acc. Beams 21, 114001 (2018).10.1103/physrevaccelbeams.21.114001
    [15]
    O. E. Vais and V. Y. Bychenkov, “Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror,” Appl. Phys. B 124, 211 (2018).10.1007/s00340-018-7084-9
    [16]
    S. Ravichandran, M. Huault, R. Lera, C. Z. He, A. Longman et al., “Imaging electron angular distributions to assess a full-power petawatt-class laser focus,” Phys. Rev. A 108, 053101 (2023).10.1103/physreva.108.053101
    [17]
    A. Longman, S. Ravichandran, L. Manzo, C. Z. He, R. Lera et al., “Toward direct spatial and intensity characterization of ultra-high-intensity laser pulses using ponderomotive scattering of free electrons,” Phys. Plasmas 30, 082110 (2023).10.1063/5.0160195
    [18]
    M. Kalashnikov, A. Andreev, K. Ivanov, A. Galkin, V. Korobkin et al., “Diagnostics of peak laser intensity based on the measurement of energy of electrons emitted from laser focal region,” Laser Part. Beams 33, 361–366 (2015).10.1017/s0263034615000403
    [19]
    Z. W. Lu, X. D. Hou, F. Wan, Y. I. Salamin, C. Lv et al., “Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin,” Matter Radiat. Extremes 8, 034401 (2023).10.1063/5.0140828
    [20]
    O. E. Vais, A. G. R. Thomas, A. M. Maksimchuk, K. Krushelnick, and V. Y. Bychenkov, “Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas,” New J. Phys. 22, 023003 (2020).10.1088/1367-2630/ab6eac
    [21]
    N. D. Bukharskii, O. E. Vais, P. A. Korneev, and V. Y. Bychenkov, “Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm,” Matter Radiat. Extremes 8, 014404 (2023).10.1063/5.0126571
    [22]
    M. F. Ciappina, S. V. Popruzhenko, S. V. Bulanov, T. Ditmire, G. Korn et al., “Progress toward atomic diagnostics of ultrahigh laser intensities,” Phys. Rev. A 99, 043405 (2019).10.1103/physreva.99.043405
    [23]
    M. F. Ciappina, E. E. Peganov, and S. V. Popruzhenko, “Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities,” Matter Radiat. Extremes 5, 044401 (2020).10.1063/5.0005380
    [24]
    I. A. Aleksandrov and A. A. Andreev, “Pair production seeded by electrons in noble gases as a method for laser intensity diagnostics,” Phys. Rev. A 104, 052801 (2021).10.1103/physreva.104.052801
    [25]
    S. E. Perevalov, A. M. Pukhov, M. V. Starodubtsev, and A. A. Soloviev, “Laser peeler regime of high-harmonic generation for diagnostics of high-power focused laser pulses,” Matter Radiat. Extremes 8, 034402 (2023).10.1063/5.0142051
    [26]
    J. J. Santos, F. Amiranoff, S. D. Baton, L. Gremillet, M. Koenig et al., “Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics,” Phys. Rev. Lett. 89, 025001 (2002).10.1103/physrevlett.89.025001
    [27]
    S. D. Baton, J. J. Santos, F. Amiranoff, H. Popescu, L. Gremillet et al., “Evidence of ultrashort electron bunches in laser–plasma interactions at relativistic intensities,” Phys. Rev. Lett. 91, 105001 (2003).10.1103/physrevlett.91.105001
    [28]
    J. Zheng, K. A. Tanaka, T. Sato, T. Yabuuchi, T. Kurahashi et al., “Study of hot electrons by measurement of optical emission from the rear surface of a metallic foil irradiated with ultraintense laser pulse,” Phys. Rev. Lett. 92, 165001 (2004).10.1103/physrevlett.92.165001
    [29]
    H. Popescu, S. D. Baton, F. Amiranoff, C. Rousseaux, M. R. Le Gloahec et al., “Subfemtosecond, coherent, relativistic, and ballistic electron bunches generated at ω and 2ω in high intensity laser-matter interaction,” Phys. Plasmas 12, 063106 (2005).10.1063/1.1927328
    [30]
    B. I. Cho, J. Osterholz, A. C. Bernstein, G. M. Dyer, A. Karmakar et al., “Characterization of two distinct, simultaneous hot electron beams in intense laser-solid interactions,” Phys. Rev. E 80, 055402 (2009).10.1103/physreve.80.055402
    [31]
    Y. R. Shou, D. H. Wang, P. J. Wang, J. B. Liu, Z. X. Cao et al., “High-efficiency generation of narrowband soft X rays from carbon nanotube foams irradiated by relativistic femtosecond lasers,” Opt Lett. 46, 3969–3972 (2021).10.1364/ol.432817
    [32]
    W. L. Kruer and K. Estabrook, “J × B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985).10.1063/1.865171
    [33]
    F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55 (1987).10.1103/physrevlett.59.52
    [34]
    K. Estabrook and W. L. Kruer, “Properties of resonantly heated electron distributions,” Phys. Rev. Lett. 40, 42–45 (1978).10.1103/physrevlett.40.42
    [35]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [36]
    J. Zheng, K. A. Tanaka, T. Miyakoshi, Y. Kitagawa, R. Kodama et al., “Theoretical study of transition radiation from hot electrons generated in the laser-solid interaction,” Phys. Plasmas 10, 2994–3003 (2003).10.1063/1.1576388
    [37]
    C. B. Schroeder, E. Esarey, J. van Tilborg, and W. P. Leemans, “Theory of coherent transition radiation generated at a plasma-vacuum interface,” Phys. Rev. E 69, 016501 (2004).10.1103/physreve.69.016501
    [38]
    C. Bellei, J. R. Davies, P. K. Chauhan, and Z. Najmudin, “Coherent transition radiation in relativistic laser–solid interactions,” Plasma Phys. Controlled Fusion 54, 035011 (2012).10.1088/0741-3335/54/3/035011
    [39]
    H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin et al., “Optical properties of relativistic plasma mirrors,” Nat. Commun. 5, 3403 (2014).10.1038/ncomms4403
    [40]
    K. Wang, L. Song, C. Wang, Z. Ren, G. Zhao et al., “On the use of deep learning for phase recovery,” Light Sci. Appl. 13, 4 (2024).10.1038/s41377-023-01340-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return