Citation: | Xu Shirui, Pan Zhuo, Gao Ying, Zhao Jiarui, Chen Shiyou, Mei Zhusong, Chen Xun, Peng Ziyang, Liu Xuan, Liang Yulan, Xu Tianqi, Song Tan, Wu Qingfan, Zhang Yujia, Liu Zhipeng, Zhang Zihao, Chen Haoran, Han Qihang, Shen Jundong, Hua Chenghao, Zhu Kun, Zhao Yanying, Lin Chen, Yan Xueqing, Ma Wenjun. Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets[J]. Matter and Radiation at Extremes, 2025, 10(2): 027202. doi: 10.1063/5.0255211 |
[1] |
M. Alkhimova, I. Skobelev, T. Pikuz, S. Ryazantsev, H. Sakaki et al., “Ultrarelativistic Fe plasma with GJ/cm3 energy density created by femtosecond laser pulses,” Matter Radiat. Extremes 9, 067205 (2024).10.1063/5.0212545
|
[2] |
G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).10.1103/revmodphys.78.309
|
[3] |
E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/revmodphys.81.1229
|
[4] |
A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).10.1103/revmodphys.85.751
|
[5] |
T. Ziegler, I. Göthel, S. Assenbaum, C. Bernert, F.-E. Brack et al., “Laser-driven high-energy proton beams from cascaded acceleration regimes,” Nat. Phys. 20, 1211–1216 (2024).10.1038/s41567-024-02505-0
|
[6] |
A. Gonoskov, T. G. Blackburn, M. Marklund, and S. S. Bulanov, “Charged particle motion and radiation in strong electromagnetic fields,” Rev. Mod. Phys. 94, 045001 (2022).10.1103/revmodphys.94.045001
|
[7] |
A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/revmodphys.84.1177
|
[8] |
C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J. C. F. Chanteloup et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
|
[9] |
J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee et al., “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
|
[10] |
G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).10.1038/nphoton.2016.140
|
[11] |
J. Gao, “Laser intensity measurement by Thomson scattering,” Appl. Phys. Lett. 88, 091105 (2006).10.1063/1.2180869
|
[12] |
C. Z. He, A. Longman, J. A. Pérez-Hernández, M. de Marco, C. Salgado et al., “Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers,” Opt Express 27, 30020–30030 (2019).10.1364/oe.27.030020
|
[13] |
O. Har-Shemesh and A. Di Piazza, “Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering,” Opt Lett. 37, 1352–1354 (2012).10.1364/ol.37.001352
|
[14] |
C. N. Harvey, “In situ characterization of ultraintense laser pulses,” Phys. Rev. Acc. Beams 21, 114001 (2018).10.1103/physrevaccelbeams.21.114001
|
[15] |
O. E. Vais and V. Y. Bychenkov, “Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror,” Appl. Phys. B 124, 211 (2018).10.1007/s00340-018-7084-9
|
[16] |
S. Ravichandran, M. Huault, R. Lera, C. Z. He, A. Longman et al., “Imaging electron angular distributions to assess a full-power petawatt-class laser focus,” Phys. Rev. A 108, 053101 (2023).10.1103/physreva.108.053101
|
[17] |
A. Longman, S. Ravichandran, L. Manzo, C. Z. He, R. Lera et al., “Toward direct spatial and intensity characterization of ultra-high-intensity laser pulses using ponderomotive scattering of free electrons,” Phys. Plasmas 30, 082110 (2023).10.1063/5.0160195
|
[18] |
M. Kalashnikov, A. Andreev, K. Ivanov, A. Galkin, V. Korobkin et al., “Diagnostics of peak laser intensity based on the measurement of energy of electrons emitted from laser focal region,” Laser Part. Beams 33, 361–366 (2015).10.1017/s0263034615000403
|
[19] |
Z. W. Lu, X. D. Hou, F. Wan, Y. I. Salamin, C. Lv et al., “Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin,” Matter Radiat. Extremes 8, 034401 (2023).10.1063/5.0140828
|
[20] |
O. E. Vais, A. G. R. Thomas, A. M. Maksimchuk, K. Krushelnick, and V. Y. Bychenkov, “Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas,” New J. Phys. 22, 023003 (2020).10.1088/1367-2630/ab6eac
|
[21] |
N. D. Bukharskii, O. E. Vais, P. A. Korneev, and V. Y. Bychenkov, “Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm,” Matter Radiat. Extremes 8, 014404 (2023).10.1063/5.0126571
|
[22] |
M. F. Ciappina, S. V. Popruzhenko, S. V. Bulanov, T. Ditmire, G. Korn et al., “Progress toward atomic diagnostics of ultrahigh laser intensities,” Phys. Rev. A 99, 043405 (2019).10.1103/physreva.99.043405
|
[23] |
M. F. Ciappina, E. E. Peganov, and S. V. Popruzhenko, “Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities,” Matter Radiat. Extremes 5, 044401 (2020).10.1063/5.0005380
|
[24] |
I. A. Aleksandrov and A. A. Andreev, “Pair production seeded by electrons in noble gases as a method for laser intensity diagnostics,” Phys. Rev. A 104, 052801 (2021).10.1103/physreva.104.052801
|
[25] |
S. E. Perevalov, A. M. Pukhov, M. V. Starodubtsev, and A. A. Soloviev, “Laser peeler regime of high-harmonic generation for diagnostics of high-power focused laser pulses,” Matter Radiat. Extremes 8, 034402 (2023).10.1063/5.0142051
|
[26] |
J. J. Santos, F. Amiranoff, S. D. Baton, L. Gremillet, M. Koenig et al., “Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics,” Phys. Rev. Lett. 89, 025001 (2002).10.1103/physrevlett.89.025001
|
[27] |
S. D. Baton, J. J. Santos, F. Amiranoff, H. Popescu, L. Gremillet et al., “Evidence of ultrashort electron bunches in laser–plasma interactions at relativistic intensities,” Phys. Rev. Lett. 91, 105001 (2003).10.1103/physrevlett.91.105001
|
[28] |
J. Zheng, K. A. Tanaka, T. Sato, T. Yabuuchi, T. Kurahashi et al., “Study of hot electrons by measurement of optical emission from the rear surface of a metallic foil irradiated with ultraintense laser pulse,” Phys. Rev. Lett. 92, 165001 (2004).10.1103/physrevlett.92.165001
|
[29] |
H. Popescu, S. D. Baton, F. Amiranoff, C. Rousseaux, M. R. Le Gloahec et al., “Subfemtosecond, coherent, relativistic, and ballistic electron bunches generated at ω and 2ω in high intensity laser-matter interaction,” Phys. Plasmas 12, 063106 (2005).10.1063/1.1927328
|
[30] |
B. I. Cho, J. Osterholz, A. C. Bernstein, G. M. Dyer, A. Karmakar et al., “Characterization of two distinct, simultaneous hot electron beams in intense laser-solid interactions,” Phys. Rev. E 80, 055402 (2009).10.1103/physreve.80.055402
|
[31] |
Y. R. Shou, D. H. Wang, P. J. Wang, J. B. Liu, Z. X. Cao et al., “High-efficiency generation of narrowband soft X rays from carbon nanotube foams irradiated by relativistic femtosecond lasers,” Opt Lett. 46, 3969–3972 (2021).10.1364/ol.432817
|
[32] |
W. L. Kruer and K. Estabrook, “J × B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985).10.1063/1.865171
|
[33] |
F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55 (1987).10.1103/physrevlett.59.52
|
[34] |
K. Estabrook and W. L. Kruer, “Properties of resonantly heated electron distributions,” Phys. Rev. Lett. 40, 42–45 (1978).10.1103/physrevlett.40.42
|
[35] |
T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
|
[36] |
J. Zheng, K. A. Tanaka, T. Miyakoshi, Y. Kitagawa, R. Kodama et al., “Theoretical study of transition radiation from hot electrons generated in the laser-solid interaction,” Phys. Plasmas 10, 2994–3003 (2003).10.1063/1.1576388
|
[37] |
C. B. Schroeder, E. Esarey, J. van Tilborg, and W. P. Leemans, “Theory of coherent transition radiation generated at a plasma-vacuum interface,” Phys. Rev. E 69, 016501 (2004).10.1103/physreve.69.016501
|
[38] |
C. Bellei, J. R. Davies, P. K. Chauhan, and Z. Najmudin, “Coherent transition radiation in relativistic laser–solid interactions,” Plasma Phys. Controlled Fusion 54, 035011 (2012).10.1088/0741-3335/54/3/035011
|
[39] |
H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin et al., “Optical properties of relativistic plasma mirrors,” Nat. Commun. 5, 3403 (2014).10.1038/ncomms4403
|
[40] |
K. Wang, L. Song, C. Wang, Z. Ren, G. Zhao et al., “On the use of deep learning for phase recovery,” Light Sci. Appl. 13, 4 (2024).10.1038/s41377-023-01340-x
|