Citation: | Liu Yan, Cui Tian, Li Da. Leading role of satellite interstitial electrons in superconductivity in ternary superlithide Li14CP[J]. Matter and Radiation at Extremes, 2025, 10(2): 027802. doi: 10.1063/5.0252519 |
[1] |
M. S. Miao and R. Hoffmann, “High pressure electrides: A predictive chemical and physical theory,” Acc. Chem. Res. 47, 1311–1317 (2014).10.1021/ar4002922
|
[2] |
X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov et al., “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440–445 (2017).10.1038/nchem.2716
|
[3] |
J. Cioslowski, “Nonnuclear attractors in the lithium dimeric molecule,” J. Phys. Chem. 94, 5496–5498 (1990).10.1021/j100377a015
|
[4] |
K. Li, Y. T. Gong, J. J. Wang, and H. Hosono, “Electron-deficient-type electride Ca5Pb3: Extension of electride chemical space,” J. Am. Chem. Soc. 143, 8821–8828 (2021).10.1021/jacs.1c03278
|
[5] |
H. Mizoguchi, S.-W. Park, T. Katase, G. V. Vazhenin, J. Kim et al., “Origin of metallic nature of Na3N,” J. Am. Chem. Soc. 143, 69–72 (2021).10.1021/jacs.0c11047
|
[6] |
Z. Q. Wang, Y. T. Gong, M. L. Evans, Y. J. Yan, S. Y. Wang et al., “Machine learning-accelerated discovery of A2BC2 ternary electrides with diverse anionic electron densities,” J. Am. Chem. Soc. 145, 26412–26424 (2023).10.1021/jacs.3c10538
|
[7] |
C. Liu, S. A. Nikolaev, W. Ren, and L. A. Burton, “Electrides: A review,” J. Mater. Chem. C 8, 10551–10567 (2020).10.1039/d0tc01165g
|
[8] |
C. J. Pickard and R. J. Needs, “Dense low-coordination phases of lithium,” Phys. Rev. Lett. 102, 146401 (2009).10.1103/physrevlett.102.146401
|
[9] |
H. Hosono and M. Kitano, “Advances in materials and applications of inorganic electrides,” Chem. Rev. 121, 3121–3185 (2021).10.1021/acs.chemrev.0c01071
|
[10] |
D. Zhang, X. Chen, P. Jiang, Y. G. Li, X. H. Zheng et al., “Pressure-tuned one- to quasi-two-dimensional structural phase transition and superconductivity in LiP15,” Phys. Rev. B 105, 094109 (2022).10.1103/physrevb.105.094109
|
[11] |
C. Z. Wang, S. H. Yi, S. Y. Liu, and J. Cho, “Underlying mechanism of charge transfer in Li-doped MgH16 at high pressure,” Phys. Rev. B 102, 184509 (2020).10.1103/physrevb.102.184509
|
[12] |
C. Kokail, C. Heil, and L. Boeri, “Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system,” Phys. Rev. B 94, 060502 (2016).10.1103/physrevb.94.060502
|
[13] |
E. Zurek, X. D. Wen, and R. Hoffmann, “(Barely) Solid Li(NH3)4: The electronics of an expanded metal,” J. Am. Chem. Soc. 133, 3535–3547 (2011).10.1021/ja109397k
|
[14] |
A. Hermann, A. McSorley, N. W. Ashcroft, and R. Hoffmann, “From Wade–Mingos to Zintl–Klemm at 100 GPa: Binary compounds of boron and lithium,” J. Am. Chem. Soc. 134, 18606–18618 (2012).10.1021/ja308492g
|
[15] |
J. Botana, J. Brgoch, C. J. Hou, and M. S. Miao, “Iodine anions beyond −1: Formation of LinI (n = 2–5) and its interaction with quasiatoms,” Inorg. Chem. 55, 9377–9382 (2016).10.1021/acs.inorgchem.6b01561
|
[16] |
Y. M. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan et al., “Transparent dense sodium,” Nature 458, 182–185 (2009).10.1038/nature07786
|
[17] |
B. Wan, Y. F. Yuan, L. Zheng, Y. Xu, S. J. Zhao et al., “BaCu, a two-dimensional electride with Cu anions,” J. Am. Chem. Soc. 146, 17508–17516 (2024).10.1021/jacs.4c05723
|
[18] |
Y. Xie, A. R. Oganov, and Y. M. Ma, “Novel high pressure structures and superconductivity of CaLi2,” Phys. Rev. Lett. 104, 177005 (2010).10.1103/physrevlett.104.177005
|
[19] |
J. Y. Hou, X. Dong, A. R. Oganov, X. J. Weng, C. M. Hao et al., “Helium-bearing superconductor at high pressure,” Phys. Rev. B 106, L220501 (2022).10.1103/physrevb.106.l220501
|
[20] |
Q. F. Wang, W. W. Cui, K. Gao, J. Chen, T. T. Gu et al., “Pressure-stabilized superconducting electride Li5C,” Phys. Rev. B 106, 054519 (2022).10.1103/physrevb.106.054519
|
[21] |
Z. Y. Wan, C. Zhang, T. Y. Yang, W. J. Xu, and R. Q. Zhang, “Predicted superconductivity and superionic state in the electride Li5N under high pressure,” New J. Phys. 24, 113012 (2022).10.1088/1367-2630/ac9cff
|
[22] |
H. M. Huang, Q. Zhu, V. A. Blatov, A. R. Oganov, X. T. Wei et al., “Novel topological motifs and superconductivity in Li-Cs system,” Nano Lett. 23, 5012–5018 (2023).10.1021/acs.nanolett.3c00875
|
[23] |
X. H. Zhang, F. Li, A. Bergara, and G. C. Yang, “Pressure-induced superconductivity in Li-Te electrides,” Phys. Rev. B 104, 134505 (2021).10.1103/physrevb.104.134505
|
[24] |
X. H. Zhang, Y. P. Zhao, A. Bergara, and G. C. Yang, “Superconducting Li10Se electride under pressure,” J. Chem. Phys. 156, 194112 (2022).10.1063/5.0092516
|
[25] |
Y. P. Zhao, J. Y. Gao, X. H. Zhang, S. C. Ding, Y. Liu et al., “Superconducting Li11Sb2 electride at ambient pressure,” J. Mater. Chem. C 11, 17087–17092 (2023).10.1039/d3tc03485b
|
[26] |
Z. Liu, Q. Zhuang, F. Tian, D. F. Duan, H. Song et al., “Proposed superconducting electride Li6C by sp-hybridized cage states at moderate pressures,” Phys. Rev. Lett. 127, 157002 (2021).10.1103/physrevlett.127.157002
|
[27] |
Z. Y. Zhao, S. T. Zhang, T. Yu, H. Y. Xu, A. Bergara et al., “Predicted pressure-induced superconducting transition in electride Li6P,” Phys. Rev. Lett. 122, 097002 (2019).10.1103/physrevlett.122.097002
|
[28] |
X. H. Zhang, Y. S. Yao, S. C. Ding, A. Bergara, F. Li et al., “Superconductivity in Li8Au electride,” Phys. Rev. B 107, L100501 (2023).10.1103/physrevb.107.l100501
|
[29] |
C. S. Cao, H. S. Hu, J. Li, and W. H. E. Schwarz, “Physical origin of chemical periodicities in the system of elements,” Pure Appl. Chem. 91, 1969–1999 (2019).10.1515/pac-2019-0901
|
[30] |
P. Schwerdtfeger, O. R. Smits, and P. Pyykkö, “The periodic table and the physics that drives it,” Nat. Rev. Chem. 4, 359–380 (2020).10.1038/s41570-020-0195-y
|
[31] |
X. M. Wang, Y. Wang, J. J. Wang, S. N. Pan, Q. Lu et al., “Pressure stabilized lithium–aluminum compounds with both superconducting and superionic behaviors,” Phys. Rev. Lett. 129, 246403 (2022).10.1103/physrevlett.129.246403
|
[32] |
Z. X. Guo, A. Bergara, X. H. Zhang, X. Li, S. C. Ding et al., “Superconductivity in Li8Hn electrides: The effect of interstitial anionic electrons on electron-phonon coupling,” Phys. Rev. B 109, 134505 (2024).10.1103/physrevb.109.134505
|
[33] |
J. Y. You, B. Gu, G. Su, and Y. P. Feng, “Emergent Kagome electrides,” J. Am. Chem. Soc. 144, 5527–5534 (2022).10.1021/jacs.2c00177
|
[34] |
X. H. Zhang, X. Du, Y. D. Wei, Z. Yang, X. Li et al., “Au with sp3 hybridization in Li5AuP2,” J. Phys. Chem. Lett. 13, 236–242 (2022).10.1021/acs.jpclett.1c03609
|
[35] |
X. Zhang, Y. Zhao, and G. Yang, “Superconducting ternary hydrides under high pressure,” Comput. Mol. Sci. 12, e1582 (2022).10.1002/wcms.1582
|
[36] |
J. J. Wang, Q. Zhu, Z. H. Wang, and H. Hosono, “Ternary inorganic electrides with mixed bonding,” Phys. Rev. B 99, 064104 (2019).10.1103/physrevb.99.064104
|
[37] |
C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys. Condens. Matter 23, 053201 (2011).10.1088/0953-8984/23/5/053201
|
[38] |
Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
|
[39] |
Z. H. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, H. Song et al., “Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure,” Phys. Rev. Lett. 128, 047001 (2022).10.1103/physrevlett.128.047001
|
[40] |
J. Jiang, Y. R. Gao, L. Li, Y. Liu, W. D. Zhu et al., “Rich proton dynamics and phase behaviours of nanoconfined ices,” Nat. Phys. 20, 456–464 (2024).10.1038/s41567-023-02341-8
|
[41] |
Y. Liu, R. Wang, Z. G. Wang, D. Li, and T. Cui, “Formation of twelve-fold iodine coordination at high pressure,” Nat. Commun. 13, 412 (2022).10.1038/s41467-022-28083-4
|
[42] |
J. Lv, Y. C. Wang, L. Zhu, and Y. M. Ma, “Predicted novel high-pressure phases of lithium,” Phys. Rev. Lett. 106, 015503 (2011).10.1103/physrevlett.106.015503
|
[43] |
J. A. Flores-Livas, L. Lehtovaara, M. Amsler, S. Goedecker, S. Pailhès et al., “Raman activity of sp3 carbon allotropes under pressure: A density functional theory study,” Phys. Rev. B 85, 155428 (2012).10.1103/physrevb.85.155428
|
[44] |
J. A. Flores-Livas, A. Sanna, A. P. Drozdov, L. Boeri, G. Profeta et al., “Interplay between structure and superconductivity: Metastable phases of phosphorus under pressure,” Phys. Rev. Materials 1, 024802 (2017).10.1103/physrevmaterials.1.024802
|
[45] |
M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip et al., “First-principles simulation: Ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717 (2002).10.1088/0953-8984/14/11/301
|
[46] |
G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).10.1016/0927-0256(96)00008-0
|
[47] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
|
[48] |
W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias,” J. Phys. Condens. Matter 21, 084204 (2009).10.1088/0953-8984/21/8/084204
|
[49] |
V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “Crystal Orbital Hamilton Population (COHP) analysis as projected from plane-wave basis sets,” J. Phys. Chem. A 115, 5461–5466 (2011).10.1021/jp202489s
|
[50] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., “Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
|
[51] |
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
|
[52] |
P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905–922 (1975).10.1103/physrevb.12.905
|
[53] |
H. Xiao, Y. Dan, B. Suo, and X. Chen, “Comment on ‘Accelerated discovery of new 8-electron half-Heusler compounds as promising energy and topological quantum materials,’” J. Phys. Chem. C 124, 2247–2249 (2020).10.1021/acs.jpcc.9b10295
|
[54] |
T. Bazhirov, J. Noffsinger, and M. L. Cohen, “Superconductivity and electron-phonon coupling in lithium at high pressures,” Phys. Rev. B 82, 184509 (2010).10.1103/physrevb.82.184509
|
[55] |
Y. B. Ma, D. F. Duan, Z. J. Shao, H. Y. Yu, H. Y. Liu et al., “Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure,” Phys. Rev. B 96, 144518 (2017).10.1103/physrevb.96.144518
|
[56] |
C. Z. Wang, S. Y. Liu, H. Jeon, S. Yi, Y. Bang et al., “Effect of hole doping on superconductivity in compressed CeH9 at high pressures,” Phys. Rev. B 104, L020504 (2021).10.1103/physrevb.104.l020504
|
[57] |
K. Yang, W. W. Cui, J. Hao, J. M. Shi, and Y. W. Li, “Superconductivity of graphenelike hydrogen in H2He at high pressure,” Phys. Rev. B 107, 024501 (2023).10.1103/physrevb.107.024501
|
[58] |
Z. Liu, D. F. Duan, Q. Zhuang, and T. Cui, “High-temperature superconductivity in electrides dominated by hybridized p-orbital-like electride states,” Phys. Rev. B 108, L100507 (2023).10.1103/physrevb.108.l100507
|