Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 5
Sep.  2025
Turn off MathJax
Article Contents
Pan Kaiqiang, Liu Zhanjun, Qin Xuelong, Li Jiwei, Gong Tao, Wang Qing, Yan Ji, Li Zhichao, Yang Dong, Liu Yonggang, He Xiantu. Experimental research on stimulated Raman scattering under a hybrid-drive ignition path[J]. Matter and Radiation at Extremes, 2025, 10(5): 057401. doi: 10.1063/5.0251754
Citation: Pan Kaiqiang, Liu Zhanjun, Qin Xuelong, Li Jiwei, Gong Tao, Wang Qing, Yan Ji, Li Zhichao, Yang Dong, Liu Yonggang, He Xiantu. Experimental research on stimulated Raman scattering under a hybrid-drive ignition path[J]. Matter and Radiation at Extremes, 2025, 10(5): 057401. doi: 10.1063/5.0251754

Experimental research on stimulated Raman scattering under a hybrid-drive ignition path

doi: 10.1063/5.0251754
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: lucifer@mail.ustc.edu.cn
  • Received Date: 2024-12-04
  • Accepted Date: 2025-06-16
  • Available Online: 2025-11-28
  • Publish Date: 2025-09-01
  • Stimulated Raman scattering (SRS) under a new ignition path that combines the advantages of direct-drive (DD) and indirect-drive (ID) schemes is investigated experimentally at the Shenguang-100 kJ facility. The results show that collective SRS in the plasma produced by ablating a polyimide film is detected for the ID beams, but is suppressed by adding a toe before the main pulse of the ID beams. The toe also strongly influences SRS of both the ID and DD beams excited in the plasma generated in the hohlraum. When a toe is used, the SRS spectra of the DD beams show that SRS tends to be excited in lower plasma density, which will result in a lower risk of super-hot electrons. Measurements of hot electrons support this conclusion. This research will help us produce a better pulse design for this new ignition path.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    K.P. designed the experiment, analyzed the data, and wrote the initial paper. Other authors helped to perform the experiment and revised the manuscript.
    Author Contributions
    Kaiqiang Pan: Data curation (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Zhanjun Liu: Data curation (supporting); Writing – review & editing (equal). Xuelong Qin: Writing – review & editing (equal). Jiwei Li: Data curation (supporting); Writing – review & editing (equal). Tao Gong: Funding acquisition (equal); Supervision (equal); Writing – review & editing (equal). Qing Wang: Writing – review & editing (equal). Ji Yan: Supervision (equal); Writing – review & editing (equal). Zhichao Li: Supervision (equal); Writing – review & editing (equal). Dong Yang: Funding acquisition (equal); Supervision (equal); Writing – review & editing (equal). Yonggang Liu: Data curation (supporting). Xiantu He: Conceptualization (equal); Supervision (equal); Writing – review & editing (equal).
    The data support our findings in this study is available from both the first author and the corresponding author upon reasonable request.
  • loading
  • [1]
    S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain et al., “Direct-drive laser fusion: Status and prospects,” Phys. Plasmas 5, 1901 (1998).10.1063/1.872861
    [2]
    E. M. Campbell, T. C. Sangster, V. N. Goncharov, J. D. Zuegel, S. F. B. Morse et al., “Direct-drive laser fusion: Status, plans and future,” Phil. Trans. R. Soc. A. 379, 2189 (2021).10.1098/rsta.2020.0011
    [3]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11(2), 339 (2004).10.1063/1.1578638
    [4]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21(2), 020501 (2014).10.1063/1.4865400
    [5]
    O. A. Hurricane, P. K. Patel, R. Betti, D. H. Froula, S. P. Regan et al., “Physics principles of inertial confinement fusion and U.S. program overview,” Rev. Mod. Phys. 95(2), 025005 (2023).10.1103/revmodphys.95.025005
    [6]
    P. Y. Chang, R. Betti, B. K. Spears, K. S. Anderson, J. Edwards et al., “Generalized measurable ignition criterion for inertial confinement fusion,” Phys. Rev. Lett. 104, 135002 (2010).10.1103/physrevlett.104.135002
    [7]
    A. Casner, “Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments,” Phil. Trans. R. Soc. A. 379, 2189 (2021).10.1098/rsta.2020.0021
    [8]
    H. Cai, X. Yan, P. Yao, and S. Zhu, “Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma,” Matter Radiat. Extremes 6, 035901 (2021).10.1063/5.0042973
    [9]
    W. L. Kruer, The Physics of Laser Plasma Interactions (CRC Press, Taylor & Francis Group, Boca Raton; London; New York, 2019).
    [10]
    K. Q. Pan, S. E. Jiang, Q. Wang, L. Guo, S. W. Li et al., “Two-plasmon decay instability of the backscattered light of stimulated Raman scattering,” Nucl. Fusion 58, 096035 (2018).10.1088/1741-4326/aad059
    [11]
    K. Q. Pan, L. Guo, Z. C. Li, D. Yang, S. W. Li et al., “Stimulated Raman scattering instability of a left-handed circularly polarized laser in strongly axially magnetized plasmas,” Phys. Plasmas 26, 012108 (2019).10.1063/1.5079524
    [12]
    Q. Wang, Z. Li, Z. Liu, T. Gong, W. Zhang et al., “The effects of incident light wavelength difference on the collective stimulated Brillouin scattering in plasmas,” Matter Radiat. Extremes 8, 055602 (2023).10.1063/5.0151372
    [13]
    X. T. He, J. W. Li, Z. F. Fan, L. F. Wang, J. Liu et al., “A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion,” Phys. Plasmas 23(8), 082706 (2016).10.1063/1.4960973
    [14]
    J. Yan, J. Li, X. T. He, L. Wang, Y. Chen et al., “Experimental confirmation of driving pressure boosting and smoothing for hybrid-drive inertial fusion at the 100-kJ laser facility,” Nat. Commun. 14, 5782 (2023).10.1038/s41467-023-41477-2
    [15]
    V. T. Tikhonchuk, C. Labaune, and H. A. Baldis, “Modeling of a stimulated Brillouin scattering experiment with statistical distribution of speckles,” Phys. Plasmas 3, 3777 (1996).10.1063/1.871510
    [16]
    Z. J. Liu, Q. Wang, B. Li, J. W. Li, L. H. Cao et al., “Stimulated Brillouin scattering enhanced by the stimulated Raman process near the quarter-critical density,” Plasma Phys. Controlled Fusion 64, 035002 (2022).10.1088/1361-6587/ac3dec
    [17]
    C. S. Liu, M. N. Rosenbluth, and R. B. White, “Raman and brillouin scattering of electromagnetic waves in inhomogeneous plasmas,” Phys. Fluids 17, 1211 (1974).10.1063/1.1694867
    [18]
    M. A. Mostrom and A. N. Kaufman, “Raman side-scatter instability in nonuniform plasma,” Phys. Rev. Lett. 42, 644 (1979).10.1103/physrevlett.42.644
    [19]
    L. Yin, B. J. Albright, H. A. Rose, D. S. Montgomery, J. L. Kline et al., “Self-organized coherent bursts of stimulated Raman scattering and speckle interaction in multi-speckled laser beams,” Phys. Plasmas 20, 012702 (2013).10.1063/1.4774964
    [20]
    L. Hao, J. Li, W. D. Liu, R. Yan, and C. Ren, “Simulation of stimulated Brillouin scattering and stimulated Raman scattering in shock ignition,” Phys. Plasmas 23, 042702 (2016).10.1063/1.4945647
    [21]
    S. Hironaka, J. Sivajeyan, J. Wang, M. J. Rosenberg, A. Solodov et al., “Identification of stimulated Raman side scattering in near-spherical coronal plasmas on OMEGA EP,” Phys. Plasmas 30, 022708 (2023).10.1063/5.0134000
    [22]
    C. S. Liu and M. N. Rosenbluth, “Parametric decay of electromagnetic waves into two plasmons and its consequences,” Phys. Fluids 19, 967 (1976).10.1063/1.861591
    [23]
    D. T. Michel, A. V. Maximov, R. W. Short, S. X. Hu, J. F. Myatt et al., “Experimental validation of the two-plasmon-decay common-wave process,” Phys. Rev. Lett. 109, 155007 (2012).10.1103/physrevlett.109.155007
    [24]
    N. A. Ebrahim, H. A. Baldis, C. Joshi, and R. Benesch, “Hot electron generation by the two-plasmon decay instability in the laser-plasma interaction at 10.6 μm,” Phys. Rev. Lett. 45, 1179 (1980).10.1103/physrevlett.45.1179
    [25]
    R. P. Drake, R. E. Turner, B. F. Lasinski, K. G. Estabrook, E. M. Campbell et al., “Efficient Raman sidescatter and hot-electron production in laser-plasma interaction experiments,” Phys. Rev. Lett. 53, 1739 (1984).10.1103/physrevlett.53.1739
    [26]
    P. Michel, L. Divol, E. L. Dewald, J. L. Milovich, M. Hohenberger et al., “Multibeam stimulated Raman scattering in inertial confinement fusion conditions,” Phys. Rev. Lett. 115, 055003 (2015).10.1103/physrevlett.115.055003
    [27]
    M. Hohenberger, F. Albert, N. E. Palmer, J. J. Lee, T. Döppner et al., “Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited),” Rev. Sci. Instrum. 85, 11D501 (2014).10.1063/1.4890537
    [28]
    S. Depierreux, C. Neuville, C. Baccou, V. Tassin, M. Casanova et al., “Experimental investigation of the collective Raman scattering of multiple laser beams in inhomogeneous plasmas,” Phys. Rev. Lett. 117, 235002 (2016).10.1103/physrevlett.117.235002
    [29]
    C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng et al., “Linear theory of multibeam parametric instabilities in homogeneous plasmas,” Phys. Plasmas 26, 062109 (2019).10.1063/1.5096850
    [30]
    A. Simon, R. W. Short, E. A. Williams, and T. Dewandre, “On the inhomogeneous two-plasmon instability,” Phys. Fluids 26, 3107 (1983).10.1063/1.864037
    [31]
    M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel et al., “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/physrevlett.120.055001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return