Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 5
Sep.  2025
Turn off MathJax
Article Contents
Yang C.-J., Spohr K. M., Cernaianu M. O., Doria D., Ghenuche P., Horný V.. A new scheme for isomer pumping and depletion with high-power lasers[J]. Matter and Radiation at Extremes, 2025, 10(5): 057201. doi: 10.1063/5.0251667
Citation: Yang C.-J., Spohr K. M., Cernaianu M. O., Doria D., Ghenuche P., Horný V.. A new scheme for isomer pumping and depletion with high-power lasers[J]. Matter and Radiation at Extremes, 2025, 10(5): 057201. doi: 10.1063/5.0251667

A new scheme for isomer pumping and depletion with high-power lasers

doi: 10.1063/5.0251667
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: chieh.jen@eli-np.ro
  • Received Date: 2024-12-04
  • Accepted Date: 2025-07-02
  • Available Online: 2025-11-28
  • Publish Date: 2025-09-01
  • We propose a novel scheme for the population and depletion of nuclear isomers. This scheme combines the γ photons with energies ≳10 keV emitted during the interaction of a contemporary high-intensity laser pulse with a plasma and one or multiple photon beams supplied by intense lasers. Owing to nonlinear effects, two- or multiphoton absorption dominates over the conventional multistep one-photon process for an optimized γ flash. Moreover, this nonlinear effect can be greatly enhanced with the help of externally supplied low-energy photons coming from another laser. These low-energy photons act such that the effective cross-section experienced by the γ photons becomes tunable, growing with the intensity I0 of the beam. Assuming I0 ∼ 1018 W⋅cm−2 for the photon beam, an effective cross-section as large as 10−21–10−28 cm2 for the γ photons can be achieved. Thus, with state-of-the-art 10 PW laser facilities, the yields from two-photon absorption can reach 106–109 isomers per shot for selected states that are separated from their ground state by E2 transitions. Similar yields for transitions with higher multipolarities can be accommodated by multiphoton absorption with additional photons provided.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    C.-J. Yang: Conceptualization (lead); Formal analysis (lead); Funding acquisition (lead); Investigation (lead); Methodology (lead); Writing – original draft (lead); Writing – review & editing (equal). K. M. Spohr: Conceptualization (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Writing – original draft (lead); Writing – review & editing (lead). M. O. Cernaianu: Investigation (supporting); Validation (equal). D. Doria: Conceptualization (supporting); Funding acquisition (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). P. Ghenuche: Methodology (supporting); Supervision (supporting); Validation (supporting). V. Horný: Investigation (equal); Validation (equal); Writing – original draft (supporting); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available within the article and its supplementary material.
  • loading
  • [1]
    M. A. Prelas, C. L. Weaver, M. L. Watermann, E. D. Lukosi, R. J. Schott et al., “A review of nuclear batteries,” Prog. Nucl. Energy 75, 117–148 (2014).10.1016/j.pnucene.2014.04.007
    [2]
    C. Nitipir, D. Niculae, C. Orlov, M. Barbu, B. Popescu et al., “Update on radionuclide therapy in oncology (review),” Oncol. Lett. 14, 7011 (2017).10.3892/ol.2017.7141
    [3]
    N. J. M. Klaassen, M. J. Arntz, A. Gil Arranja, J. Roosen, and J. F. W. Nijsen, “The various therapeutic applications of the medical isotope holmium-166: A narrative review,” EJNMMI Radiopharmacy Chem. 4, 19 (2019).10.1186/s41181-019-0066-3
    [4]
    G. Sgouros, L. Bodei, M. R. McDevitt, and J. R. Nedrow, “Radiopharmaceutical therapy in cancer: Clinical advances and challenges,” Nat. Rev. Drug Discov. 19, 589–608 (2020).10.1038/s41573-020-0073-9
    [5]
    G. C. Baldwin, J. C. Solem, and V. I. Gol’danskii, “Approaches to the development of gamma-ray lasers,” Rev. Mod. Phys. 53, 687–744 (1981).10.1103/revmodphys.53.687
    [6]
    G. C. Baldwin and J. C. Solem, “Recoilless gamma-ray lasers,” Rev. Mod. Phys. 69, 1085–1118 (1997).10.1103/revmodphys.69.1085
    [7]
    O. Hahn, “Über ein neues radioaktives zerfallsprodukt im uran,” Naturwissenschaften 9, 84 (1921).10.1007/bf01491321
    [8]
    P. Walker and G. Dracoulis, “Energy traps in atomic nuclei,” Nature 399, 35–40 (1999).10.1038/19911
    [9]
    J. Tiedau, M. V. Okhapkin, K. Zhang, J. Thielking, G. Zitzer et al., “Laser excitation of the Th-229 nucleus,” Phys. Rev. Lett. 132, 182501 (2024).10.1103/physrevlett.132.182501
    [10]
    S. A. Karamian and J. J. Carroll, “Cross section for inelastic neutron ‘acceleration’ by 178Hfm2,” Phys. Rev. C 83, 024604 (2011).10.1103/physrevc.83.024604
    [11]
    J. Feng, W. Wang, C. Fu, L. Chen, J. Tan et al., “Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons,” Phys. Rev. Lett. 128, 052501 (2022).10.1103/physrevlett.128.052501
    [12]
    C. J. Chiara, J. J. Carroll, M. P. Carpenter, J. P. Greene, D. J. Hartley et al., “Isomer depletion as experimental evidence of nuclear excitation by electron capture,” Nature 554, 216–218 (2018).10.1038/nature25483
    [13]
    S. Guo, Y. Fang, X. Zhou, and C. M. Petrache, “Possible overestimation of isomer depletion due to contamination,” Nature 594, E1–E2 (2021).10.1038/s41586-021-03333-5
    [14]
    S. Guo, B. Ding, X. H. Zhou, Y. B. Wu, J. G. Wang et al., “Probing 93mMo isomer depletion with an isomer beam,” Phys. Rev. Lett. 128, 242502 (2022).10.1103/physrevlett.128.242502
    [15]
    Y. Wu, C. H. Keitel, and A. Pálffy, “93mMo isomer depletion via beam-based nuclear excitation by electron capture,” Phys. Rev. Lett. 122, 212501 (2019).10.1103/PhysRevLett.122.212501
    [16]
    V. I. Goldanskii and V. A. Namiot, “On the excitation of isomeric nuclear levels by laser radiation through inverse internal electron conversion,” Phys. Lett. B 62, 393–394 (1976).10.1016/0370-2693(76)90665-1
    [17]
    P. Morel, “Nuclear excitation by electronic processes: NEEC and NEET effects,” AIP Conf. Proc. 769, 1085 (2005).10.1063/1.1945195
    [18]
    A. Pálffy, J. Evers, and C. H. Keitel, “Isomer triggering via nuclear excitation by electron capture,” Phys. Rev. Lett. 99, 172502 (2007).10.1103/physrevlett.99.172502
    [19]
    D. Belic, C. Arlandini, J. Besserer, J. de Boer, J. J. Carroll et al., “Photoactivation of 180Tam and its implications for the nucleosynthesis of nature’s rarest naturally occurring isotope,” Phys. Rev. Lett. 83, 5242–5245 (1999).10.1103/physrevlett.83.5242
    [20]
    I. Stefanescu, G. Georgiev, F. Ames, J. Äystö, D. L. Balabanski et al., “Coulomb excitation of 68,70Cu: First use of postaccelerated isomeric beams,” Phys. Rev. Lett. 98, 122701 (2007).10.1103/physrevlett.98.122701
    [21]
    O. Roig, V. Méot, B. Rossé, G. Bélier, J.-M. Daugas et al., “Direct evidence for inelastic neutron ‘acceleration’ by 177Lum,” Phys. Rev. C 83, 064617 (2011).10.1103/PhysRevC.83.064617
    [22]
    J. J. Carroll, M. S. Litz, K. A. Netherton, S. L. Henriquez, N. R. Pereira et al., “Nuclear structure and depletion of nuclear isomers using electron linacs,” AIP Conf. Proc. 1525, 586 (2013).10.1063/1.4802396
    [23]
    V. I. Kirischuk, V. A. Ageev, A. M. Dovbnya, S. S. Kandybei, and Y. M. Ranyuk, “Induced acceleration of the decay of the 31-yr isomer of 178m2Hf using bremsstrahlung radiation,” Phys. Lett. B 750, 89–94 (2015).10.1016/j.physletb.2015.08.051
    [24]
    L. von der Wense, B. Seiferle, M. Laatiaoui, J. B. Neumayr, H.-J. Maier et al., “Direct detection of the 229Th nuclear clock transition,” Nature 533, 47–51 (2016).10.1038/nature17669
    [25]
    J. J. Carroll, S. A. Karamian, R. Propri, D. Gohlke, N. Caldwell et al., “Search for low-energy induced depletion of 178Hfm2 at the SPring-8 synchrotron,” Phys. Lett. B 679, 203–208 (2009).10.1016/j.physletb.2009.07.025
    [26]
    J. Gunst, Y. Wu, C. H. Keitel, and A. Pálffy, “Nuclear excitation by electron capture in optical-laser-generated plasmas,” Phys. Rev. E 97, 063205 (2018).10.1103/physreve.97.063205
    [27]
    Y. Wu, J. Gunst, C. H. Keitel, and A. Pálffy, “Tailoring laser-generated plasmas for efficient nuclear excitation by electron capture,” Phys. Rev. Lett. 120, 052504 (2018).10.1103/physrevlett.120.052504
    [28]
    J. Rzadkiewicz, M. Polasik, K. Słabkowska, L. Syrocki, J. J. Carroll et al., “Novel approach to 93mMo isomer depletion: Nuclear excitation by electron capture in resonant transfer process,” Phys. Rev. Lett. 127, 042501 (2021).10.1103/PhysRevLett.127.042501
    [29]
    S. Olariu and A. Olariu, “Induced emission of γ radiation from isomeric nuclei,” Phys. Rev. C 58, 333–336 (1998).10.1103/physrevc.58.333
    [30]
    S. Olariu and A. Olariu, “Power densities for two-step γ-ray transitions from isomeric states,” Phys. Rev. C 58, 2560–2562 (1998).10.1103/physrevc.58.2560
    [31]
    P. M. Walker, G. D. Dracoulis, and J. J. Carroll, “Interpretation of the excitation and decay of 180Tam through a Kπ = 5+ band,” Phys. Rev. C 64, 061302(R) (2001).10.1103/physrevc.64.061302
    [32]
    E. V. Tkalya, “Induced decay of 178Hfm2: Theoretical analysis of experimental results,” Phys. Rev. C 71, 024606 (2005).10.1103/physrevc.71.024606
    [33]
    K. M. Spohr et al., “On the possibility of laser-plasma-induced depopulation of the isomer in 93Mo at ELI-NP,” Eur. Phys. J. A 59, 281 (2023).10.1140/epja/s10050-023-01160-y
    [34]
    S. Olariu, I. Popescu, and C. B. Collins, “Tuning of γ-ray processes with high power optical radiation,” Phys. Rev. C 23, 50–63 (1981).10.1103/physrevc.23.50
    [35]
    C. B. Collins, S. Olariu, M. Petrascu, and I. Popescu, “Laser-induced resonant absorption of γ radiation,” Phys. Rev. C 20, 1942–1945 (1979).10.1103/physrevc.20.1942
    [36]
    S. Olariu, I. Popescu, and C. B. Collins, “Multiphoton generation of optical sidebands to nuclear transitions,” Phys. Rev. C 23, 1007–1014 (1981).10.1103/physrevc.23.1007
    [37]
    W. Becker, R. R. Schlicher, and M. O. Scully, “Comment on enhancement of forbidden nuclear beta decay by high-intensity radio-frequency fields,” Phys. Rev. C 29, 1124–1131 (1984).10.1103/physrevc.29.1124
    [38]
    W. Wang, J. Zhou, B. Liu, and X. Wang, “Exciting the isomeric 229Th nuclear state via laser-driven electron recollision,” Phys. Rev. Lett. 127, 052501 (2021).10.1103/physrevlett.127.052501
    [39]
    W. Lv, H. Duan, and J. Liu, “Enhanced deuterium-tritium fusion cross sections in the presence of strong electromagnetic fields,” Phys. Rev. C 100, 064610 (2019).10.1103/physrevc.100.064610
    [40]
    S. A. Ghinescu and D. S. Delion, “Coupled-channels analysis of the α decay in strong electromagnetic fields,” Phys. Rev. C 101, 044304 (2020).10.1103/physrevc.101.044304
    [41]
    L. von der Wense, P. V. Bilous, B. Seiferle, S. Stellmer, J. Weitenberg et al., “The theory of direct laser excitation of nuclear transitions,” Eur. Phys. J. A 56, 176 (2020).10.1140/epja/s10050-020-00177-x
    [42]
    X. Wang, “Nuclear excitation of 229Th induced by laser-driven electron recollision,” Phys. Rev. C 106, 024606 (2022).10.1103/physrevc.106.024606
    [43]
    J. J. Bekx, M. L. Lindsey, S. H. Glenzer, and K.-G. Schlesinger, “Applicability of semiclassical methods for modeling laser-enhanced fusion rates in a realistic setting,” Phys. Rev. C 105, 054001 (2022).10.1103/physrevc.105.054001
    [44]
    J. Qi, T. Li, R. Xu, L. Fu, and X. Wang, “α decay in intense laser fields: Calculations using realistic nuclear potentials,” Phys. Rev. C 99, 044610 (2019).10.1103/physrevc.99.044610
    [45]
    F. Queisser and R. Schützhold, “Dynamically assisted nuclear fusion,” Phys. Rev. C 100, 041601(R) (2019).10.1103/physrevc.100.041601
    [46]
    T. Li and X. Wang, “Nonlinear optical effects in a nucleus,” J. Phys. G: Nucl. Part. Phys. 48, 095105 (2021).10.1088/1361-6471/ac1712
    [47]
    S. Liu, H. Duan, D. Ye, and J. Liu, “Deuterium-tritium fusion process in strong laser fields: Semiclassical simulation,” Phys. Rev. C 104, 044614 (2021).10.1103/physrevc.104.044614
    [48]
    W. Lv, B. Wu, H. Duan, S. Liu, and J. Liu, “Phase-dependent cross sections of deuteron-triton fusion in dichromatic intense fields with high-frequency limit,” Eur. Phys. J. A 58, 54 (2022).10.1140/epja/s10050-022-00697-8
    [49]
    H. Xu, H. Tang, G. Wang, C. Li, B. Li et al., “Solid-state 229Th nuclear laser with two-photon pumping,” Phys. Rev. A 108, L021502 (2023).10.1103/physreva.108.l021502
    [50]
    Z.-W. Lu, L. Guo, Z.-Z. Li, M. Ababekri, F.-Q. Chen et al., “Manipulation of giant multipole resonances via vortex γ photons,” Phys. Rev. Lett. 131, 202502 (2023).10.1103/physrevlett.131.202502
    [51]
    J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee et al., “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27, 20412–20420 (2019).10.1364/oe.27.020412
    [52]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee et al., “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
    [53]
    W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu et al., “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43, 5681–5684 (2018).10.1364/ol.43.005681
    [54]
    L. Yu, Y. Xu, Y. Liu, Y. Li, S. Li et al., “High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser,” Opt. Express 26, 2625–2633 (2018).10.1364/oe.26.002625
    [55]
    C. A. Ur, D. Balabanski, G. Cata-Danil, S. Gales, I. Morjan et al., “The ELI–NP facility for nuclear physics,” Nucl. Instrum. Methods Phys. Res., Sect. B 355, 198–202 (2015).10.1016/j.nimb.2015.04.033
    [56]
    K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi et al., “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5, 024402 (2020).10.1063/1.5093535
    [57]
    T. Nakamura, J. K. Koga, T. Z. Esirkepov, M. Kando, G. Korn et al., “High-power γ-ray flash generation in ultraintense laser-plasma interactions,” Phys. Rev. Lett. 108, 195001 (2012).10.1103/physrevlett.108.195001
    [58]
    C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett et al., “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
    [59]
    L. L. Ji, A. Pukhov, E. N. Nerush, I. Y. Kostyukov, B. F. Shen et al., “Energy partition, γ-ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser-plasma interaction,” Phys. Plasmas 21, 023109 (2014).10.1063/1.4866014
    [60]
    T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser–electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).10.1103/physrevlett.112.015001
    [61]
    J.-X. Li, K. Z. Hatsagortsyan, B. J. Galow, and C. H. Keitel, “Attosecond gamma-ray pulses via nonlinear compton scattering in the radiation-dominated regime,” Phys. Rev. Lett. 115, 204801 (2015).10.1103/physrevlett.115.204801
    [62]
    H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou et al., “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).10.1038/srep45031
    [63]
    X.-L. Zhu, M. Chen, T.-P. Yu, S.-M. Weng, L.-X. Hu et al., “Bright attosecond γ-ray pulses from nonlinear compton scattering with laser-illuminated compound targets,” Appl. Phys. Lett. 112, 174102 (2018).10.1063/1.5028555
    [64]
    T. W. Huang, C. M. Kim, C. T. Zhou, M. H. Cho, K. Nakajima et al., “Highly efficient laser-driven compton gamma-ray source,” New J. Phys. 21, 013008 (2019).10.1088/1367-2630/aaf8c4
    [65]
    F. Mackenroth and A. Di Piazza, “Nonlinear Compton scattering in ultrashort laser pulses,” Phys. Rev. A 83, 032106 (2011).10.1103/physreva.83.032106
    [66]
    A. Gonoskov, A. Bashinov, S. Bastrakov, E. Efimenko, A. Ilderton et al., “Ultrabright GeV photon source via controlled electromagnetic cascades in laser-dipole waves,” Phys. Rev. X 7, 041003 (2017).10.1103/physrevx.7.041003
    [67]
    J. Snyder, L. L. Ji, K. M. George, C. Willis, G. E. Cochran et al., “Relativistic laser driven electron accelerator using micro-channel plasma targets,” Phys. Plasmas 26, 033110 (2019).10.1063/1.5087409
    [68]
    X. Shen, A. Pukhov, and B. Qiao, “High-flux bright x-ray source from femtosecond laser-irradiated microtapes,” Commun. Phys. 7, 84 (2024).10.1038/s42005-024-01575-z
    [69]
    N. Tsoneva, C. Stoyanov, Y. P. Gangrsky, V. Y. Ponomarev, N. P. Balabanov et al., “Population of isomers in the decay of the giant dipole resonance,” Phys. Rev. C 61, 044303 (2000).10.1103/physrevc.61.044303
    [70]
    J. Feng, Y. Li, J. Tan, W. Wang, Y. Li et al., “Laser plasma-accelerated ultra-intense electron beam for efficiently exciting nuclear isomers,” Laser Photonics Rev. 17, 2300514 (2023).10.1002/lpor.202300514
    [71]
    M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. MacKinnon, P. K. Patel et al., “Fast ion generation by high-intensity laser irradiation of solid targets and applications,” Fusion Sci. Technol. 49, 412–439 (2006).10.13182/fst06-a1159
    [72]
    M. Roth, A. Blazevic, M. Geissel, T. Schlegel, T. E. Cowan et al., “Energetic ions generated by laser pulses: A detailed study on target properties,” Phys. Rev. ST Accel. Beams 5, 061301 (2002).10.1103/physrevstab.5.061301
    [73]
    B. G. Logan, R. O. Bangerter, D. A. Callahan, M. Tabak, M. Roth et al., “Assessment of potential for ion-driven fast ignition,” Fusion Sci. Technol. 49, 399–411 (2006).10.13182/fst06-a1158
    [74]
    M. Roth, “Review on the current status and prospects of fast ignition in fusion targets driven by intense, laser generated proton beams,” Plasma Phys. Controlled Fusion 51, 014004 (2008).10.1088/0741-3335/51/1/014004
    [75]
    X. F. Shen, A. Pukhov, and B. Qiao, “Monoenergetic high-energy ion source via femtosecond laser interacting with a microtape,” Phys. Rev. X 11, 041002 (2021).10.1103/physrevx.11.041002
    [76]
    J. Sarma, A. McIlvenny, N. Das, M. Borghesi, and A. Macchi, “Surface plasmon-driven electron and proton acceleration without grating coupling,” New J. Phys. 24, 073023 (2022).10.1088/1367-2630/ac7d6e
    [77]
    Q. S. Wang, C. Y. Qin, H. Zhang, S. Li, A. X. Li et al., “Spatial distribution modulation of laser-accelerated charged particles with micro-tube structures,” Phys. Plasmas 30, 043105 (2023).10.1063/5.0138179
    [78]
    E. Eftekhari-Zadeh, M. S. Blümcke, Z. Samsonova, R. Loetzsch, I. Uschmann et al., “Laser energy absorption and x-ray generation in nanowire arrays irradiated by relativistically intense ultra-high contrast femtosecond laser pulses,” Phys. Plasmas 29, 013301 (2022).10.1063/5.0064364
    [79]
    Y. Zhao, H. Lu, C. Zhou, and J. Zhu, “Overcritical electron acceleration and betatron radiation in the bubble-like structure formed by re-injected electrons in a tailored transverse plasma,” Matter Radiat. Extremes 8, 014403 (2022).10.1063/5.0121558
    [80]
    M. Göppert-Mayer, “Über elementarakte mit zwei quantensprüngen,” Ann. Phys. 401, 273–294 (1931).10.1002/andp.19314010303
    [81]
    W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2: Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).10.1103/physrevlett.7.229
    [82]
    C. B. Collins, S. Olariu, M. Petrascu, and I. Popescu, “Enhancement of γ-ray absorption in the radiation field of a high-power laser,” Phys. Rev. Lett. 42, 1397–1400 (1979).10.1103/physrevlett.42.1397
    [83]
    C. B. Collins, F. W. Lee, D. M. Shemwell, B. D. DePaola, S. Olariu et al., “The coherent and incoherent pumping of a gamma ray laser with intense optical radiation,” J. Appl. Phys. 53, 4645–4651 (1982).10.1063/1.331291
    [84]
    C.-J. Yang, V. Horny, D. Doria, and K. Spohr, “Nuclear physics under the low-energy, high-intensity frontier,” Proc. SPIE 13535, 1353506 (2025).10.1117/12.3056128
    [85]
    J. Schirmer, D. Habs, R. Kroth, N. Kwong, D. Schwalm et al., “Double gamma decay in 40Ca and 90Zr,” Phys. Rev. Lett. 53, 1897–1900 (1984).10.1103/physrevlett.53.1897
    [86]
    J. Kramp, D. Habs, R. Kroth, M. Music, J. Schirmer et al., “Nuclear two-photon decay in 0+ → 0+ transitions,” Nucl. Phys. 474, 412–450 (1987).10.1016/0375-9474(87)90625-7
    [87]
    S. Gorodetzky, G. Sutter, R. Armbruster, P. Chevallier, P. Mennrath et al., “Double gamma emission in the 6.06-MeV monopole transition of O16,” Phys. Rev. Lett. 7, 170–172 (1961).10.1103/physrevlett.7.170
    [88]
    D. E. Alburger and P. D. Parker, “Search for double gamma-ray emission from the first excited states of O16 and C12,” Phys. Rev. 135, B294–B300 (1964).10.1103/physrev.135.b294
    [89]
    P. Harihar, J. D. Ullman, and C. S. Wu, “Search for double gamma emission from the first excited states of Ca40 and Zr90,” Phys. Rev. C 2, 462–467 (1970).10.1103/physrevc.2.462
    [90]
    Y. Nakayama, “Two-photon decay of the 1.76-MeV 0+ state of 90Zr,” Phys. Rev. C 7, 322–330 (1973).10.1103/physrevc.7.322
    [91]
    J. C. Vanderleeden and P. S. Jastram, “Search for double-photon decay in Zr90,” Phys. Rev. C 1, 1025–1035 (1970).10.1103/physrevc.1.1025
    [92]
    P. A. Söderström, L. Capponi, E. Açıksöz, T. Otsuka, N. Tsoneva et al., “Electromagnetic character of the competitive γγ/γ-decay from 137mBa,” Nat. Commun. 11, 3242 (2020); arXiv:2001.00554 [nucl-ex].10.1038/s41467-020-16787-4
    [93]
    D. Freire-Fernández, W. Korten, R. J. Chen, S. Litvinov, Y. A. Litvinov et al., “Measurement of the isolated nuclear two-photon decay in 72Ge,” Phys. Rev. Lett. 133, 022502 (2024).10.1103/PhysRevLett.133.022502 022502
    [94]
    P. Lambropoulos, Topics on Multiphoton Processes in Atoms** work Supported by a Grant from the National Science Foundation No. MPS74-17553 (Academic Press, 1976), pp. 87–164.
    [95]
    H. Friedrich, Theoretical Atomic Physics (Springer International Publishing, 2017).
    [96]
    N. B. Delone and V. P. Krainov, Multiphoton Processes in Atoms (Springer, Berlin, Heidelberg, 2000).
    [97]
    W. R. Johnson, C. D. Lin, K. T. Cheng, and C. M. Lee, “Relativistic random-phase approximation,” Phys. Scr. 21, 409 (1980).10.1088/0031-8949/21/3-4/029
    [98]
    J. C. Slater, “A simplification of the Hartree-Fock method,” Phys. Rev. 81, 385 (1951).10.1103/physrev.81.385
    [99]
    C. Froese-Fischer, T. Brage, and P. Jonsson, Computational Atomic Structure: An MCHF Approach (Routledge, 2019).
    [100]
    S. Wilson, “Diagrammatic many-body perturbation theory of atomic and molecular electronic structure,” Comput. Phys. Rep. 2, 391–480 (1985).10.1016/0167-7977(85)90004-8
    [101]
    S. T. Manson, “Relativistic-random-phase approximation calculations of atomic photoionization: What we have learned,” Can. J. Phys. 87, 5–8 (2009).10.1139/p08-058
    [102]
    K. Omidvar, “Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation,” Phys. Rev. A 22, 1576–1587 (1980).10.1103/physreva.22.1576
    [103]
    K. Omidvar, “Erratum: Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation,” Phys. Rev. A 30, 2805(E) (1984).10.1103/physreva.30.2805
    [104]
    R. P. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross sections in atomic oxygen,” Phys. Rev. A 34, 199–206 (1986).10.1103/physreva.34.199
    [105]
    D. J. Bamford, L. E. Jusinski, and W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).10.1103/physreva.34.185
    [106]
    G. Mainfray and G. Manus, “Multiphoton ionization of atoms,” Rep. Prog. Phys. 54, 1333–1372 (1991).10.1088/0034-4885/54/10/002
    [107]
    C. B. Collins and J. J. Carroll, “Progress in the pumping of gamma-ray laser,” Hyperfine Interact. 107, 3–42 (1997).10.1023/a:1012076310568
    [108]
    L. Krauss-Kodytek, W.-R. Hannes, T. Meier, C. Ruppert, and M. Betz, “Nondegenerate two-photon absorption in ZnSe: Experiment and theory,” Phys. Rev. B 104, 085201 (2021).10.1103/physrevb.104.085201
    [109]
    U. van Kolck, “The problem of Renormalization of chiral nuclear forces,” Front. Phys. 8, 79 (2020).10.3389/fphy.2020.00079
    [110]
    C. J. Yang, “Do we know how to count powers in pionless and pionful effective field theory?,” Eur. Phys. J. A 56, 96 (2020).10.1140/epja/s10050-020-00104-0
    [111]
    C. J. Yang, A. Ekström, C. Forssén, G. Hagen, G. Rupak et al., “The importance of few-nucleon forces in chiral effective field theory,” Eur. Phys. J. A 59, 233 (2023).10.1140/epja/s10050-023-01149-7
    [112]
    I. Tews et al., “Nuclear forces for precision nuclear physics: A collection of perspectives,” Few Body Syst. 63, 67 (2022).10.1007/s00601-022-01749-x
    [113]
    J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Springer, New York, 1952).
    [114]
    G. S. Agarwal, “Field-correlation effects in multiphoton absorption processes,” Phys. Rev. A 1, 1445–1459 (1970).10.1103/physreva.1.1445
    [115]
    P. Zoller and P. Lambropoulos, “Laser temporal coherence effects in two-photon resonant three-photon ionisation,” J. Phys. B: At. Mol. Phys. 13, 69–83 (1980).10.1088/0022-3700/13/1/015
    [116]
    M. N. Hack and M. Hamermesh, “Effect of radiofrequency resonance on the natural line form,” Il Nuovo Cimento 19, 546–557 (1961).10.1007/bf02733250
    [117]
    R. L. Mössbauer, “Kernresonanzfluoreszenz von Gammastrahlung in Ir191,” Z. Phys. 151, 124–143 (1958).10.1007/BF01344210
    [118]
    T. Wang, X. Ribeyre, Z. Gong, O. Jansen, E. d’Humières et al., “Power scaling for collimated γ-ray beams generated by structured laser-irradiated targets and its application to two-photon pair production,” Phys. Rev. Appl. 13, 054024 (2020).10.1103/physrevapplied.13.054024
    [119]
    Y.-J. Gu, O. Klimo, S. V. Bulanov, and S. Weber, “Brilliant gamma-ray beam and electron–positron pair production by enhanced attosecond pulses,” Commun. Phys. 1, 93 (2018).10.1038/s42005-018-0095-3
    [120]
    K. Xue, Z.-K. Dou, F. Wan, T.-P. Yu, W.-M. Wang et al., “Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction,” Matter Radiat. Extremes 5, 054402 (2020).10.1063/5.0007734
    [121]
    T. Wang, D. Blackman, K. Chin, and A. Arefiev, “Effects of simulation dimensionality on laser-driven electron acceleration and photon emission in hollow microchannel targets,” Phys. Rev. E 104, 045206 (2021).10.1103/physreve.104.045206
    [122]
    C. Heppe and N. Kumar, “High brilliance γ-ray generation from the laser interaction in a carbon plasma channel,” Front. Phys. 10, 987830 (2022).10.3389/fphy.2022.987830
    [123]
    M. Jirka, M. Vranic, T. Grismayer, and L. O. Silva, “Scaling laws for direct laser acceleration in a radiation-reaction dominated regime,” New J. Phys. 22, 083058 (2020).10.1088/1367-2630/aba653
    [124]
    R. F. Casten, Collective Excitations in Even–Even Nuclei: Vibrational and Rotational Motion (Oxford University Press, Oxford, 2001), pp. 173–296.
    [125]
    [126]
    M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov et al., “Relativistic plasma nanophotonics for ultrahigh energy density physics,” Nat. Photonics 7, 796–800 (2013).10.1038/nphoton.2013.217
    [127]
    C. Bargsten, R. Hollinger, M. G. Capeluto, V. Kaymak, A. Pukhov et al., “Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures,” Sci. Adv. 3, e1601558 (2017).10.1126/sciadv.1601558
    [128]
    L. Cao, Y. Gu, Z. Zhao, L. Cao, W. Huang et al., “Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target,” Phys. Plasmas 17, 043103 (2010).10.1063/1.3360298
    [129]
    Z. Samsonova, S. Höfer, R. Hollinger, T. Kämpfer, I. Uschmann et al., “Hard x-ray generation from ZnO nanowire targets in a non-relativistic regime of laser-solid interactions,” Appl. Sci. 8, 1728 (2018).10.3390/app8101728
    [130]
    G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits et al., “Intense picosecond x-ray pulses from laser plasmas by use of nanostructured ‘velvet’ targets,” Phys. Rev. Lett. 84, 5149–5152 (2000).10.1103/physrevlett.84.5149
    [131]
    G. Cristoforetti, A. Anzalone, F. Baffigi, G. Bussolino, G. D’Arrigo et al., “Investigation on laser–plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target,” Plasma Phys. Controlled Fusion 56, 095001 (2014).10.1088/0741-3335/56/9/095001
    [132]
    R. Hollinger, C. Bargsten, V. N. Shlyaptsev, V. Kaymak, A. Pukhov et al., “Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime,” Optica 4, 1344 (2017).10.1364/optica.4.001344
    [133]
    K. A. Ivanov, D. A. Gozhev, S. P. Rodichkina, S. V. Makarov, S. S. Makarov et al., “Nanostructured plasmas for enhanced gamma emission at relativistic laser interaction with solids,” Appl. Phys. B 123, 252 (2017).10.1007/s00340-017-6826-4
    [134]
    D. Khaghani, M. Lobet, B. Borm, L. Burr, F. Gärtner et al., “Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy,” Sci. Rep. 7, 11366 (2017).10.1038/s41598-017-11589-z
    [135]
    L. A. Gizzi, G. Cristoforetti, F. Baffigi, F. Brandi, G. D’Arrigo et al., “Intense proton acceleration in ultrarelativistic interaction with nanochannels,” Phys. Rev. Res. 2, 033451 (2020).10.1103/physrevresearch.2.033451
    [136]
    G. Cristoforetti, F. Baffigi, F. Brandi, G. D’Arrigo, A. Fazzi et al., “Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets,” Plasma Phys. Controlled Fusion 62, 114001 (2020).10.1088/1361-6587/abb5e3
    [137]
    D. Sarkar, P. K. Singh, G. Cristoforetti, A. Adak, G. Chatterjee et al., “Silicon nanowire based high brightness, pulsed relativistic electron source,” APL Photonics 2, 066105 (2017).10.1063/1.4984906
    [138]
    A. Moreau, R. Hollinger, C. Calvi, S. Wang, Y. Wang et al., “Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities,” Plasma Phys. Controlled Fusion 62, 014013 (2019).10.1088/1361-6587/ab4d0c
    [139]
    R. Hollinger, S. Wang, Y. Wang, A. Moreau, M. G. Capeluto et al., “Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses,” Nat. Photonics 14, 607–611 (2020).10.1038/s41566-020-0666-1
    [140]
    J. Park, R. Tommasini, R. Shepherd, R. A. London, C. Bargsten et al., “Absolute laser energy absorption measurement of relativistic 0.7 ps laser pulses in nanowire arrays,” Phys. Plasmas 28, 023302 (2021).10.1063/5.0035174
    [141]
    X. Pan, M. Šmíd, L. G. Huang, T. Kluge, V. Bagnoud et al., “Investigation on laser absorption and x-ray radiation in microstructured titanium targets heated by short-pulse relativistic laser pulses,” Phys. Rev. Res. 6, 013025 (2024).10.1103/physrevresearch.6.013025
    [142]
    Y.-D. Xia, D.-F. Kong, Q.-Y. He, Z. Guo, D.-J. Zhang et al., “Generation and regulation of electromagnetic pulses generated by femtosecond lasers interacting with multitargets,” Nucl. Sci. Tech. 35, 10 (2024).10.1007/s41365-024-01381-w
    [143]
    Y. Yang, C. Lv, W. Sun, X. Ban, Q. Liu et al., “Neutron generation enhanced by a femtosecond laser irradiating on multi-channel target,” Front. Phys. 11, 1189755 (2023).10.3389/fphy.2023.1189755
    [144]
    D. Kong, G. Zhang, Y. Shou, S. Xu, Z. Mei et al., “High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions,” Matter Radiat. Extremes 7, 064403 (2022).10.1063/5.0120845
    [145]
    Y. Chao, L. Cao, C. Zheng, Z. Liu, and X. He, “Enhanced proton acceleration from laser interaction with a tailored nanowire target,” Appl. Sci. 12, 1153 (2022).10.3390/app12031153
    [146]
    B. Arad, S. Eliezer, and Y. Paiss, “Nuclear ‘anti-Stokes’ transitions induced by laser radiation,” Phys. Lett. 74, 395–397 (1979).10.1016/0375-9601(79)90234-2
    [147]
    W. Becker, R. R. Schlicher, and M. O. Scully, “Laser-induced nuclear anti-Stokes transitions revisited,” Phys. Lett. 106, 441–445 (1984).10.1016/0375-9601(84)90989-7
    [148]
    R. A. Müller, A. V. Volotka, and A. Surzhykov, “Excitation of the 229Th nucleus via a two-photon electronic transition,” Phys. Rev. A 99, 042517 (2019).10.1103/PhysRevA.99.042517
    [149]
    B. Ishkhanov and I. Piskarev, “Excitation of γ-laser using the nuclear Raman effect,” Yad. Fiz. 32, 593–594 (1980).
    [150]
    E. V. Baklanov and V. P. Chebotaev, “Possible development of a γ-ray laser,” Sov. J. Quantum Electron. 6, 345–347 (1976).10.1070/qe1976v006n03abeh011077
    [151]
    F. Winterberg, “Beating the graser dilemma by rapid heat-removal under high pressure,” AIP Conf. Proc. 146, 66 (1986).10.1063/1.35822
    [152]
    S. Eliezer, J. M. Martinez-Val, Y. Paiss, and G. Velarde, “Induced Stokes or anti-Stokes nuclear transitions,” Quantum Electron. 25, 1106 (1995).10.1070/qe1995v025n11abeh000543
    [153]
    S. Eliezer, J. Martinezval, and J. Borowitz, “On the possibility for a gamma-ray laser,” Laser Phys. 5, 323–325 (1995).
    [154]
    L. A. Rivlin, “Two-quantum-induced energy release of isomeric nuclei,” Quantum Electron. 34, 23–28 (2004).10.1070/qe2004v034n01abeh002574
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (13) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return