| Citation: | Yang C.-J., Spohr K. M., Cernaianu M. O., Doria D., Ghenuche P., Horný V.. A new scheme for isomer pumping and depletion with high-power lasers[J]. Matter and Radiation at Extremes, 2025, 10(5): 057201. doi: 10.1063/5.0251667 |
| [1] |
M. A. Prelas, C. L. Weaver, M. L. Watermann, E. D. Lukosi, R. J. Schott et al., “A review of nuclear batteries,” Prog. Nucl. Energy 75, 117–148 (2014).10.1016/j.pnucene.2014.04.007
|
| [2] |
C. Nitipir, D. Niculae, C. Orlov, M. Barbu, B. Popescu et al., “Update on radionuclide therapy in oncology (review),” Oncol. Lett. 14, 7011 (2017).10.3892/ol.2017.7141
|
| [3] |
N. J. M. Klaassen, M. J. Arntz, A. Gil Arranja, J. Roosen, and J. F. W. Nijsen, “The various therapeutic applications of the medical isotope holmium-166: A narrative review,” EJNMMI Radiopharmacy Chem. 4, 19 (2019).10.1186/s41181-019-0066-3
|
| [4] |
G. Sgouros, L. Bodei, M. R. McDevitt, and J. R. Nedrow, “Radiopharmaceutical therapy in cancer: Clinical advances and challenges,” Nat. Rev. Drug Discov. 19, 589–608 (2020).10.1038/s41573-020-0073-9
|
| [5] |
G. C. Baldwin, J. C. Solem, and V. I. Gol’danskii, “Approaches to the development of gamma-ray lasers,” Rev. Mod. Phys. 53, 687–744 (1981).10.1103/revmodphys.53.687
|
| [6] |
G. C. Baldwin and J. C. Solem, “Recoilless gamma-ray lasers,” Rev. Mod. Phys. 69, 1085–1118 (1997).10.1103/revmodphys.69.1085
|
| [7] |
O. Hahn, “Über ein neues radioaktives zerfallsprodukt im uran,” Naturwissenschaften 9, 84 (1921).10.1007/bf01491321
|
| [8] |
P. Walker and G. Dracoulis, “Energy traps in atomic nuclei,” Nature 399, 35–40 (1999).10.1038/19911
|
| [9] |
J. Tiedau, M. V. Okhapkin, K. Zhang, J. Thielking, G. Zitzer et al., “Laser excitation of the Th-229 nucleus,” Phys. Rev. Lett. 132, 182501 (2024).10.1103/physrevlett.132.182501
|
| [10] |
S. A. Karamian and J. J. Carroll, “Cross section for inelastic neutron ‘acceleration’ by 178Hfm2,” Phys. Rev. C 83, 024604 (2011).10.1103/physrevc.83.024604
|
| [11] |
J. Feng, W. Wang, C. Fu, L. Chen, J. Tan et al., “Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons,” Phys. Rev. Lett. 128, 052501 (2022).10.1103/physrevlett.128.052501
|
| [12] |
C. J. Chiara, J. J. Carroll, M. P. Carpenter, J. P. Greene, D. J. Hartley et al., “Isomer depletion as experimental evidence of nuclear excitation by electron capture,” Nature 554, 216–218 (2018).10.1038/nature25483
|
| [13] |
S. Guo, Y. Fang, X. Zhou, and C. M. Petrache, “Possible overestimation of isomer depletion due to contamination,” Nature 594, E1–E2 (2021).10.1038/s41586-021-03333-5
|
| [14] |
S. Guo, B. Ding, X. H. Zhou, Y. B. Wu, J. G. Wang et al., “Probing 93mMo isomer depletion with an isomer beam,” Phys. Rev. Lett. 128, 242502 (2022).10.1103/physrevlett.128.242502
|
| [15] |
Y. Wu, C. H. Keitel, and A. Pálffy, “93mMo isomer depletion via beam-based nuclear excitation by electron capture,” Phys. Rev. Lett. 122, 212501 (2019).10.1103/PhysRevLett.122.212501
|
| [16] |
V. I. Goldanskii and V. A. Namiot, “On the excitation of isomeric nuclear levels by laser radiation through inverse internal electron conversion,” Phys. Lett. B 62, 393–394 (1976).10.1016/0370-2693(76)90665-1
|
| [17] |
P. Morel, “Nuclear excitation by electronic processes: NEEC and NEET effects,” AIP Conf. Proc. 769, 1085 (2005).10.1063/1.1945195
|
| [18] |
A. Pálffy, J. Evers, and C. H. Keitel, “Isomer triggering via nuclear excitation by electron capture,” Phys. Rev. Lett. 99, 172502 (2007).10.1103/physrevlett.99.172502
|
| [19] |
D. Belic, C. Arlandini, J. Besserer, J. de Boer, J. J. Carroll et al., “Photoactivation of 180Tam and its implications for the nucleosynthesis of nature’s rarest naturally occurring isotope,” Phys. Rev. Lett. 83, 5242–5245 (1999).10.1103/physrevlett.83.5242
|
| [20] |
I. Stefanescu, G. Georgiev, F. Ames, J. Äystö, D. L. Balabanski et al., “Coulomb excitation of 68,70Cu: First use of postaccelerated isomeric beams,” Phys. Rev. Lett. 98, 122701 (2007).10.1103/physrevlett.98.122701
|
| [21] |
O. Roig, V. Méot, B. Rossé, G. Bélier, J.-M. Daugas et al., “Direct evidence for inelastic neutron ‘acceleration’ by 177Lum,” Phys. Rev. C 83, 064617 (2011).10.1103/PhysRevC.83.064617
|
| [22] |
J. J. Carroll, M. S. Litz, K. A. Netherton, S. L. Henriquez, N. R. Pereira et al., “Nuclear structure and depletion of nuclear isomers using electron linacs,” AIP Conf. Proc. 1525, 586 (2013).10.1063/1.4802396
|
| [23] |
V. I. Kirischuk, V. A. Ageev, A. M. Dovbnya, S. S. Kandybei, and Y. M. Ranyuk, “Induced acceleration of the decay of the 31-yr isomer of 178m2Hf using bremsstrahlung radiation,” Phys. Lett. B 750, 89–94 (2015).10.1016/j.physletb.2015.08.051
|
| [24] |
L. von der Wense, B. Seiferle, M. Laatiaoui, J. B. Neumayr, H.-J. Maier et al., “Direct detection of the 229Th nuclear clock transition,” Nature 533, 47–51 (2016).10.1038/nature17669
|
| [25] |
J. J. Carroll, S. A. Karamian, R. Propri, D. Gohlke, N. Caldwell et al., “Search for low-energy induced depletion of 178Hfm2 at the SPring-8 synchrotron,” Phys. Lett. B 679, 203–208 (2009).10.1016/j.physletb.2009.07.025
|
| [26] |
J. Gunst, Y. Wu, C. H. Keitel, and A. Pálffy, “Nuclear excitation by electron capture in optical-laser-generated plasmas,” Phys. Rev. E 97, 063205 (2018).10.1103/physreve.97.063205
|
| [27] |
Y. Wu, J. Gunst, C. H. Keitel, and A. Pálffy, “Tailoring laser-generated plasmas for efficient nuclear excitation by electron capture,” Phys. Rev. Lett. 120, 052504 (2018).10.1103/physrevlett.120.052504
|
| [28] |
J. Rzadkiewicz, M. Polasik, K. Słabkowska, L. Syrocki, J. J. Carroll et al., “Novel approach to 93mMo isomer depletion: Nuclear excitation by electron capture in resonant transfer process,” Phys. Rev. Lett. 127, 042501 (2021).10.1103/PhysRevLett.127.042501
|
| [29] |
S. Olariu and A. Olariu, “Induced emission of γ radiation from isomeric nuclei,” Phys. Rev. C 58, 333–336 (1998).10.1103/physrevc.58.333
|
| [30] |
S. Olariu and A. Olariu, “Power densities for two-step γ-ray transitions from isomeric states,” Phys. Rev. C 58, 2560–2562 (1998).10.1103/physrevc.58.2560
|
| [31] |
P. M. Walker, G. D. Dracoulis, and J. J. Carroll, “Interpretation of the excitation and decay of 180Tam through a Kπ = 5+ band,” Phys. Rev. C 64, 061302(R) (2001).10.1103/physrevc.64.061302
|
| [32] |
E. V. Tkalya, “Induced decay of 178Hfm2: Theoretical analysis of experimental results,” Phys. Rev. C 71, 024606 (2005).10.1103/physrevc.71.024606
|
| [33] |
K. M. Spohr et al., “On the possibility of laser-plasma-induced depopulation of the isomer in 93Mo at ELI-NP,” Eur. Phys. J. A 59, 281 (2023).10.1140/epja/s10050-023-01160-y
|
| [34] |
S. Olariu, I. Popescu, and C. B. Collins, “Tuning of γ-ray processes with high power optical radiation,” Phys. Rev. C 23, 50–63 (1981).10.1103/physrevc.23.50
|
| [35] |
C. B. Collins, S. Olariu, M. Petrascu, and I. Popescu, “Laser-induced resonant absorption of γ radiation,” Phys. Rev. C 20, 1942–1945 (1979).10.1103/physrevc.20.1942
|
| [36] |
S. Olariu, I. Popescu, and C. B. Collins, “Multiphoton generation of optical sidebands to nuclear transitions,” Phys. Rev. C 23, 1007–1014 (1981).10.1103/physrevc.23.1007
|
| [37] |
W. Becker, R. R. Schlicher, and M. O. Scully, “Comment on enhancement of forbidden nuclear beta decay by high-intensity radio-frequency fields,” Phys. Rev. C 29, 1124–1131 (1984).10.1103/physrevc.29.1124
|
| [38] |
W. Wang, J. Zhou, B. Liu, and X. Wang, “Exciting the isomeric 229Th nuclear state via laser-driven electron recollision,” Phys. Rev. Lett. 127, 052501 (2021).10.1103/physrevlett.127.052501
|
| [39] |
W. Lv, H. Duan, and J. Liu, “Enhanced deuterium-tritium fusion cross sections in the presence of strong electromagnetic fields,” Phys. Rev. C 100, 064610 (2019).10.1103/physrevc.100.064610
|
| [40] |
S. A. Ghinescu and D. S. Delion, “Coupled-channels analysis of the α decay in strong electromagnetic fields,” Phys. Rev. C 101, 044304 (2020).10.1103/physrevc.101.044304
|
| [41] |
L. von der Wense, P. V. Bilous, B. Seiferle, S. Stellmer, J. Weitenberg et al., “The theory of direct laser excitation of nuclear transitions,” Eur. Phys. J. A 56, 176 (2020).10.1140/epja/s10050-020-00177-x
|
| [42] |
X. Wang, “Nuclear excitation of 229Th induced by laser-driven electron recollision,” Phys. Rev. C 106, 024606 (2022).10.1103/physrevc.106.024606
|
| [43] |
J. J. Bekx, M. L. Lindsey, S. H. Glenzer, and K.-G. Schlesinger, “Applicability of semiclassical methods for modeling laser-enhanced fusion rates in a realistic setting,” Phys. Rev. C 105, 054001 (2022).10.1103/physrevc.105.054001
|
| [44] |
J. Qi, T. Li, R. Xu, L. Fu, and X. Wang, “α decay in intense laser fields: Calculations using realistic nuclear potentials,” Phys. Rev. C 99, 044610 (2019).10.1103/physrevc.99.044610
|
| [45] |
F. Queisser and R. Schützhold, “Dynamically assisted nuclear fusion,” Phys. Rev. C 100, 041601(R) (2019).10.1103/physrevc.100.041601
|
| [46] |
T. Li and X. Wang, “Nonlinear optical effects in a nucleus,” J. Phys. G: Nucl. Part. Phys. 48, 095105 (2021).10.1088/1361-6471/ac1712
|
| [47] |
S. Liu, H. Duan, D. Ye, and J. Liu, “Deuterium-tritium fusion process in strong laser fields: Semiclassical simulation,” Phys. Rev. C 104, 044614 (2021).10.1103/physrevc.104.044614
|
| [48] |
W. Lv, B. Wu, H. Duan, S. Liu, and J. Liu, “Phase-dependent cross sections of deuteron-triton fusion in dichromatic intense fields with high-frequency limit,” Eur. Phys. J. A 58, 54 (2022).10.1140/epja/s10050-022-00697-8
|
| [49] |
H. Xu, H. Tang, G. Wang, C. Li, B. Li et al., “Solid-state 229Th nuclear laser with two-photon pumping,” Phys. Rev. A 108, L021502 (2023).10.1103/physreva.108.l021502
|
| [50] |
Z.-W. Lu, L. Guo, Z.-Z. Li, M. Ababekri, F.-Q. Chen et al., “Manipulation of giant multipole resonances via vortex γ photons,” Phys. Rev. Lett. 131, 202502 (2023).10.1103/physrevlett.131.202502
|
| [51] |
J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee et al., “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27, 20412–20420 (2019).10.1364/oe.27.020412
|
| [52] |
J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee et al., “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
|
| [53] |
W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu et al., “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43, 5681–5684 (2018).10.1364/ol.43.005681
|
| [54] |
L. Yu, Y. Xu, Y. Liu, Y. Li, S. Li et al., “High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser,” Opt. Express 26, 2625–2633 (2018).10.1364/oe.26.002625
|
| [55] |
C. A. Ur, D. Balabanski, G. Cata-Danil, S. Gales, I. Morjan et al., “The ELI–NP facility for nuclear physics,” Nucl. Instrum. Methods Phys. Res., Sect. B 355, 198–202 (2015).10.1016/j.nimb.2015.04.033
|
| [56] |
K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi et al., “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5, 024402 (2020).10.1063/1.5093535
|
| [57] |
T. Nakamura, J. K. Koga, T. Z. Esirkepov, M. Kando, G. Korn et al., “High-power γ-ray flash generation in ultraintense laser-plasma interactions,” Phys. Rev. Lett. 108, 195001 (2012).10.1103/physrevlett.108.195001
|
| [58] |
C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett et al., “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
|
| [59] |
L. L. Ji, A. Pukhov, E. N. Nerush, I. Y. Kostyukov, B. F. Shen et al., “Energy partition, γ-ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser-plasma interaction,” Phys. Plasmas 21, 023109 (2014).10.1063/1.4866014
|
| [60] |
T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser–electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).10.1103/physrevlett.112.015001
|
| [61] |
J.-X. Li, K. Z. Hatsagortsyan, B. J. Galow, and C. H. Keitel, “Attosecond gamma-ray pulses via nonlinear compton scattering in the radiation-dominated regime,” Phys. Rev. Lett. 115, 204801 (2015).10.1103/physrevlett.115.204801
|
| [62] |
H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou et al., “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).10.1038/srep45031
|
| [63] |
X.-L. Zhu, M. Chen, T.-P. Yu, S.-M. Weng, L.-X. Hu et al., “Bright attosecond γ-ray pulses from nonlinear compton scattering with laser-illuminated compound targets,” Appl. Phys. Lett. 112, 174102 (2018).10.1063/1.5028555
|
| [64] |
T. W. Huang, C. M. Kim, C. T. Zhou, M. H. Cho, K. Nakajima et al., “Highly efficient laser-driven compton gamma-ray source,” New J. Phys. 21, 013008 (2019).10.1088/1367-2630/aaf8c4
|
| [65] |
F. Mackenroth and A. Di Piazza, “Nonlinear Compton scattering in ultrashort laser pulses,” Phys. Rev. A 83, 032106 (2011).10.1103/physreva.83.032106
|
| [66] |
A. Gonoskov, A. Bashinov, S. Bastrakov, E. Efimenko, A. Ilderton et al., “Ultrabright GeV photon source via controlled electromagnetic cascades in laser-dipole waves,” Phys. Rev. X 7, 041003 (2017).10.1103/physrevx.7.041003
|
| [67] |
J. Snyder, L. L. Ji, K. M. George, C. Willis, G. E. Cochran et al., “Relativistic laser driven electron accelerator using micro-channel plasma targets,” Phys. Plasmas 26, 033110 (2019).10.1063/1.5087409
|
| [68] |
X. Shen, A. Pukhov, and B. Qiao, “High-flux bright x-ray source from femtosecond laser-irradiated microtapes,” Commun. Phys. 7, 84 (2024).10.1038/s42005-024-01575-z
|
| [69] |
N. Tsoneva, C. Stoyanov, Y. P. Gangrsky, V. Y. Ponomarev, N. P. Balabanov et al., “Population of isomers in the decay of the giant dipole resonance,” Phys. Rev. C 61, 044303 (2000).10.1103/physrevc.61.044303
|
| [70] |
J. Feng, Y. Li, J. Tan, W. Wang, Y. Li et al., “Laser plasma-accelerated ultra-intense electron beam for efficiently exciting nuclear isomers,” Laser Photonics Rev. 17, 2300514 (2023).10.1002/lpor.202300514
|
| [71] |
M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. MacKinnon, P. K. Patel et al., “Fast ion generation by high-intensity laser irradiation of solid targets and applications,” Fusion Sci. Technol. 49, 412–439 (2006).10.13182/fst06-a1159
|
| [72] |
M. Roth, A. Blazevic, M. Geissel, T. Schlegel, T. E. Cowan et al., “Energetic ions generated by laser pulses: A detailed study on target properties,” Phys. Rev. ST Accel. Beams 5, 061301 (2002).10.1103/physrevstab.5.061301
|
| [73] |
B. G. Logan, R. O. Bangerter, D. A. Callahan, M. Tabak, M. Roth et al., “Assessment of potential for ion-driven fast ignition,” Fusion Sci. Technol. 49, 399–411 (2006).10.13182/fst06-a1158
|
| [74] |
M. Roth, “Review on the current status and prospects of fast ignition in fusion targets driven by intense, laser generated proton beams,” Plasma Phys. Controlled Fusion 51, 014004 (2008).10.1088/0741-3335/51/1/014004
|
| [75] |
X. F. Shen, A. Pukhov, and B. Qiao, “Monoenergetic high-energy ion source via femtosecond laser interacting with a microtape,” Phys. Rev. X 11, 041002 (2021).10.1103/physrevx.11.041002
|
| [76] |
J. Sarma, A. McIlvenny, N. Das, M. Borghesi, and A. Macchi, “Surface plasmon-driven electron and proton acceleration without grating coupling,” New J. Phys. 24, 073023 (2022).10.1088/1367-2630/ac7d6e
|
| [77] |
Q. S. Wang, C. Y. Qin, H. Zhang, S. Li, A. X. Li et al., “Spatial distribution modulation of laser-accelerated charged particles with micro-tube structures,” Phys. Plasmas 30, 043105 (2023).10.1063/5.0138179
|
| [78] |
E. Eftekhari-Zadeh, M. S. Blümcke, Z. Samsonova, R. Loetzsch, I. Uschmann et al., “Laser energy absorption and x-ray generation in nanowire arrays irradiated by relativistically intense ultra-high contrast femtosecond laser pulses,” Phys. Plasmas 29, 013301 (2022).10.1063/5.0064364
|
| [79] |
Y. Zhao, H. Lu, C. Zhou, and J. Zhu, “Overcritical electron acceleration and betatron radiation in the bubble-like structure formed by re-injected electrons in a tailored transverse plasma,” Matter Radiat. Extremes 8, 014403 (2022).10.1063/5.0121558
|
| [80] |
M. Göppert-Mayer, “Über elementarakte mit zwei quantensprüngen,” Ann. Phys. 401, 273–294 (1931).10.1002/andp.19314010303
|
| [81] |
W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2: Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).10.1103/physrevlett.7.229
|
| [82] |
C. B. Collins, S. Olariu, M. Petrascu, and I. Popescu, “Enhancement of γ-ray absorption in the radiation field of a high-power laser,” Phys. Rev. Lett. 42, 1397–1400 (1979).10.1103/physrevlett.42.1397
|
| [83] |
C. B. Collins, F. W. Lee, D. M. Shemwell, B. D. DePaola, S. Olariu et al., “The coherent and incoherent pumping of a gamma ray laser with intense optical radiation,” J. Appl. Phys. 53, 4645–4651 (1982).10.1063/1.331291
|
| [84] |
C.-J. Yang, V. Horny, D. Doria, and K. Spohr, “Nuclear physics under the low-energy, high-intensity frontier,” Proc. SPIE 13535, 1353506 (2025).10.1117/12.3056128
|
| [85] |
J. Schirmer, D. Habs, R. Kroth, N. Kwong, D. Schwalm et al., “Double gamma decay in 40Ca and 90Zr,” Phys. Rev. Lett. 53, 1897–1900 (1984).10.1103/physrevlett.53.1897
|
| [86] |
J. Kramp, D. Habs, R. Kroth, M. Music, J. Schirmer et al., “Nuclear two-photon decay in 0+ → 0+ transitions,” Nucl. Phys. 474, 412–450 (1987).10.1016/0375-9474(87)90625-7
|
| [87] |
S. Gorodetzky, G. Sutter, R. Armbruster, P. Chevallier, P. Mennrath et al., “Double gamma emission in the 6.06-MeV monopole transition of O16,” Phys. Rev. Lett. 7, 170–172 (1961).10.1103/physrevlett.7.170
|
| [88] |
D. E. Alburger and P. D. Parker, “Search for double gamma-ray emission from the first excited states of O16 and C12,” Phys. Rev. 135, B294–B300 (1964).10.1103/physrev.135.b294
|
| [89] |
P. Harihar, J. D. Ullman, and C. S. Wu, “Search for double gamma emission from the first excited states of Ca40 and Zr90,” Phys. Rev. C 2, 462–467 (1970).10.1103/physrevc.2.462
|
| [90] |
Y. Nakayama, “Two-photon decay of the 1.76-MeV 0+ state of 90Zr,” Phys. Rev. C 7, 322–330 (1973).10.1103/physrevc.7.322
|
| [91] |
J. C. Vanderleeden and P. S. Jastram, “Search for double-photon decay in Zr90,” Phys. Rev. C 1, 1025–1035 (1970).10.1103/physrevc.1.1025
|
| [92] |
P. A. Söderström, L. Capponi, E. Açıksöz, T. Otsuka, N. Tsoneva et al., “Electromagnetic character of the competitive γγ/γ-decay from 137mBa,” Nat. Commun. 11, 3242 (2020); arXiv:2001.00554 [nucl-ex].10.1038/s41467-020-16787-4
|
| [93] |
D. Freire-Fernández, W. Korten, R. J. Chen, S. Litvinov, Y. A. Litvinov et al., “Measurement of the isolated nuclear two-photon decay in 72Ge,” Phys. Rev. Lett. 133, 022502 (2024).10.1103/PhysRevLett.133.022502 022502
|
| [94] |
P. Lambropoulos, Topics on Multiphoton Processes in Atoms** work Supported by a Grant from the National Science Foundation No. MPS74-17553 (Academic Press, 1976), pp. 87–164.
|
| [95] |
H. Friedrich, Theoretical Atomic Physics (Springer International Publishing, 2017).
|
| [96] |
N. B. Delone and V. P. Krainov, Multiphoton Processes in Atoms (Springer, Berlin, Heidelberg, 2000).
|
| [97] |
W. R. Johnson, C. D. Lin, K. T. Cheng, and C. M. Lee, “Relativistic random-phase approximation,” Phys. Scr. 21, 409 (1980).10.1088/0031-8949/21/3-4/029
|
| [98] |
J. C. Slater, “A simplification of the Hartree-Fock method,” Phys. Rev. 81, 385 (1951).10.1103/physrev.81.385
|
| [99] |
C. Froese-Fischer, T. Brage, and P. Jonsson, Computational Atomic Structure: An MCHF Approach (Routledge, 2019).
|
| [100] |
S. Wilson, “Diagrammatic many-body perturbation theory of atomic and molecular electronic structure,” Comput. Phys. Rep. 2, 391–480 (1985).10.1016/0167-7977(85)90004-8
|
| [101] |
S. T. Manson, “Relativistic-random-phase approximation calculations of atomic photoionization: What we have learned,” Can. J. Phys. 87, 5–8 (2009).10.1139/p08-058
|
| [102] |
K. Omidvar, “Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation,” Phys. Rev. A 22, 1576–1587 (1980).10.1103/physreva.22.1576
|
| [103] |
K. Omidvar, “Erratum: Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation,” Phys. Rev. A 30, 2805(E) (1984).10.1103/physreva.30.2805
|
| [104] |
R. P. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross sections in atomic oxygen,” Phys. Rev. A 34, 199–206 (1986).10.1103/physreva.34.199
|
| [105] |
D. J. Bamford, L. E. Jusinski, and W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).10.1103/physreva.34.185
|
| [106] |
G. Mainfray and G. Manus, “Multiphoton ionization of atoms,” Rep. Prog. Phys. 54, 1333–1372 (1991).10.1088/0034-4885/54/10/002
|
| [107] |
C. B. Collins and J. J. Carroll, “Progress in the pumping of gamma-ray laser,” Hyperfine Interact. 107, 3–42 (1997).10.1023/a:1012076310568
|
| [108] |
L. Krauss-Kodytek, W.-R. Hannes, T. Meier, C. Ruppert, and M. Betz, “Nondegenerate two-photon absorption in ZnSe: Experiment and theory,” Phys. Rev. B 104, 085201 (2021).10.1103/physrevb.104.085201
|
| [109] |
U. van Kolck, “The problem of Renormalization of chiral nuclear forces,” Front. Phys. 8, 79 (2020).10.3389/fphy.2020.00079
|
| [110] |
C. J. Yang, “Do we know how to count powers in pionless and pionful effective field theory?,” Eur. Phys. J. A 56, 96 (2020).10.1140/epja/s10050-020-00104-0
|
| [111] |
C. J. Yang, A. Ekström, C. Forssén, G. Hagen, G. Rupak et al., “The importance of few-nucleon forces in chiral effective field theory,” Eur. Phys. J. A 59, 233 (2023).10.1140/epja/s10050-023-01149-7
|
| [112] |
I. Tews et al., “Nuclear forces for precision nuclear physics: A collection of perspectives,” Few Body Syst. 63, 67 (2022).10.1007/s00601-022-01749-x
|
| [113] |
J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Springer, New York, 1952).
|
| [114] |
G. S. Agarwal, “Field-correlation effects in multiphoton absorption processes,” Phys. Rev. A 1, 1445–1459 (1970).10.1103/physreva.1.1445
|
| [115] |
P. Zoller and P. Lambropoulos, “Laser temporal coherence effects in two-photon resonant three-photon ionisation,” J. Phys. B: At. Mol. Phys. 13, 69–83 (1980).10.1088/0022-3700/13/1/015
|
| [116] |
M. N. Hack and M. Hamermesh, “Effect of radiofrequency resonance on the natural line form,” Il Nuovo Cimento 19, 546–557 (1961).10.1007/bf02733250
|
| [117] |
R. L. Mössbauer, “Kernresonanzfluoreszenz von Gammastrahlung in Ir191,” Z. Phys. 151, 124–143 (1958).10.1007/BF01344210
|
| [118] |
T. Wang, X. Ribeyre, Z. Gong, O. Jansen, E. d’Humières et al., “Power scaling for collimated γ-ray beams generated by structured laser-irradiated targets and its application to two-photon pair production,” Phys. Rev. Appl. 13, 054024 (2020).10.1103/physrevapplied.13.054024
|
| [119] |
Y.-J. Gu, O. Klimo, S. V. Bulanov, and S. Weber, “Brilliant gamma-ray beam and electron–positron pair production by enhanced attosecond pulses,” Commun. Phys. 1, 93 (2018).10.1038/s42005-018-0095-3
|
| [120] |
K. Xue, Z.-K. Dou, F. Wan, T.-P. Yu, W.-M. Wang et al., “Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction,” Matter Radiat. Extremes 5, 054402 (2020).10.1063/5.0007734
|
| [121] |
T. Wang, D. Blackman, K. Chin, and A. Arefiev, “Effects of simulation dimensionality on laser-driven electron acceleration and photon emission in hollow microchannel targets,” Phys. Rev. E 104, 045206 (2021).10.1103/physreve.104.045206
|
| [122] |
C. Heppe and N. Kumar, “High brilliance γ-ray generation from the laser interaction in a carbon plasma channel,” Front. Phys. 10, 987830 (2022).10.3389/fphy.2022.987830
|
| [123] |
M. Jirka, M. Vranic, T. Grismayer, and L. O. Silva, “Scaling laws for direct laser acceleration in a radiation-reaction dominated regime,” New J. Phys. 22, 083058 (2020).10.1088/1367-2630/aba653
|
| [124] |
R. F. Casten, Collective Excitations in Even–Even Nuclei: Vibrational and Rotational Motion (Oxford University Press, Oxford, 2001), pp. 173–296.
|
| [125] | |
| [126] |
M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov et al., “Relativistic plasma nanophotonics for ultrahigh energy density physics,” Nat. Photonics 7, 796–800 (2013).10.1038/nphoton.2013.217
|
| [127] |
C. Bargsten, R. Hollinger, M. G. Capeluto, V. Kaymak, A. Pukhov et al., “Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures,” Sci. Adv. 3, e1601558 (2017).10.1126/sciadv.1601558
|
| [128] |
L. Cao, Y. Gu, Z. Zhao, L. Cao, W. Huang et al., “Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target,” Phys. Plasmas 17, 043103 (2010).10.1063/1.3360298
|
| [129] |
Z. Samsonova, S. Höfer, R. Hollinger, T. Kämpfer, I. Uschmann et al., “Hard x-ray generation from ZnO nanowire targets in a non-relativistic regime of laser-solid interactions,” Appl. Sci. 8, 1728 (2018).10.3390/app8101728
|
| [130] |
G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits et al., “Intense picosecond x-ray pulses from laser plasmas by use of nanostructured ‘velvet’ targets,” Phys. Rev. Lett. 84, 5149–5152 (2000).10.1103/physrevlett.84.5149
|
| [131] |
G. Cristoforetti, A. Anzalone, F. Baffigi, G. Bussolino, G. D’Arrigo et al., “Investigation on laser–plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target,” Plasma Phys. Controlled Fusion 56, 095001 (2014).10.1088/0741-3335/56/9/095001
|
| [132] |
R. Hollinger, C. Bargsten, V. N. Shlyaptsev, V. Kaymak, A. Pukhov et al., “Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime,” Optica 4, 1344 (2017).10.1364/optica.4.001344
|
| [133] |
K. A. Ivanov, D. A. Gozhev, S. P. Rodichkina, S. V. Makarov, S. S. Makarov et al., “Nanostructured plasmas for enhanced gamma emission at relativistic laser interaction with solids,” Appl. Phys. B 123, 252 (2017).10.1007/s00340-017-6826-4
|
| [134] |
D. Khaghani, M. Lobet, B. Borm, L. Burr, F. Gärtner et al., “Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy,” Sci. Rep. 7, 11366 (2017).10.1038/s41598-017-11589-z
|
| [135] |
L. A. Gizzi, G. Cristoforetti, F. Baffigi, F. Brandi, G. D’Arrigo et al., “Intense proton acceleration in ultrarelativistic interaction with nanochannels,” Phys. Rev. Res. 2, 033451 (2020).10.1103/physrevresearch.2.033451
|
| [136] |
G. Cristoforetti, F. Baffigi, F. Brandi, G. D’Arrigo, A. Fazzi et al., “Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets,” Plasma Phys. Controlled Fusion 62, 114001 (2020).10.1088/1361-6587/abb5e3
|
| [137] |
D. Sarkar, P. K. Singh, G. Cristoforetti, A. Adak, G. Chatterjee et al., “Silicon nanowire based high brightness, pulsed relativistic electron source,” APL Photonics 2, 066105 (2017).10.1063/1.4984906
|
| [138] |
A. Moreau, R. Hollinger, C. Calvi, S. Wang, Y. Wang et al., “Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities,” Plasma Phys. Controlled Fusion 62, 014013 (2019).10.1088/1361-6587/ab4d0c
|
| [139] |
R. Hollinger, S. Wang, Y. Wang, A. Moreau, M. G. Capeluto et al., “Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses,” Nat. Photonics 14, 607–611 (2020).10.1038/s41566-020-0666-1
|
| [140] |
J. Park, R. Tommasini, R. Shepherd, R. A. London, C. Bargsten et al., “Absolute laser energy absorption measurement of relativistic 0.7 ps laser pulses in nanowire arrays,” Phys. Plasmas 28, 023302 (2021).10.1063/5.0035174
|
| [141] |
X. Pan, M. Šmíd, L. G. Huang, T. Kluge, V. Bagnoud et al., “Investigation on laser absorption and x-ray radiation in microstructured titanium targets heated by short-pulse relativistic laser pulses,” Phys. Rev. Res. 6, 013025 (2024).10.1103/physrevresearch.6.013025
|
| [142] |
Y.-D. Xia, D.-F. Kong, Q.-Y. He, Z. Guo, D.-J. Zhang et al., “Generation and regulation of electromagnetic pulses generated by femtosecond lasers interacting with multitargets,” Nucl. Sci. Tech. 35, 10 (2024).10.1007/s41365-024-01381-w
|
| [143] |
Y. Yang, C. Lv, W. Sun, X. Ban, Q. Liu et al., “Neutron generation enhanced by a femtosecond laser irradiating on multi-channel target,” Front. Phys. 11, 1189755 (2023).10.3389/fphy.2023.1189755
|
| [144] |
D. Kong, G. Zhang, Y. Shou, S. Xu, Z. Mei et al., “High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions,” Matter Radiat. Extremes 7, 064403 (2022).10.1063/5.0120845
|
| [145] |
Y. Chao, L. Cao, C. Zheng, Z. Liu, and X. He, “Enhanced proton acceleration from laser interaction with a tailored nanowire target,” Appl. Sci. 12, 1153 (2022).10.3390/app12031153
|
| [146] |
B. Arad, S. Eliezer, and Y. Paiss, “Nuclear ‘anti-Stokes’ transitions induced by laser radiation,” Phys. Lett. 74, 395–397 (1979).10.1016/0375-9601(79)90234-2
|
| [147] |
W. Becker, R. R. Schlicher, and M. O. Scully, “Laser-induced nuclear anti-Stokes transitions revisited,” Phys. Lett. 106, 441–445 (1984).10.1016/0375-9601(84)90989-7
|
| [148] |
R. A. Müller, A. V. Volotka, and A. Surzhykov, “Excitation of the 229Th nucleus via a two-photon electronic transition,” Phys. Rev. A 99, 042517 (2019).10.1103/PhysRevA.99.042517
|
| [149] |
B. Ishkhanov and I. Piskarev, “Excitation of γ-laser using the nuclear Raman effect,” Yad. Fiz. 32, 593–594 (1980).
|
| [150] |
E. V. Baklanov and V. P. Chebotaev, “Possible development of a γ-ray laser,” Sov. J. Quantum Electron. 6, 345–347 (1976).10.1070/qe1976v006n03abeh011077
|
| [151] |
F. Winterberg, “Beating the graser dilemma by rapid heat-removal under high pressure,” AIP Conf. Proc. 146, 66 (1986).10.1063/1.35822
|
| [152] |
S. Eliezer, J. M. Martinez-Val, Y. Paiss, and G. Velarde, “Induced Stokes or anti-Stokes nuclear transitions,” Quantum Electron. 25, 1106 (1995).10.1070/qe1995v025n11abeh000543
|
| [153] |
S. Eliezer, J. Martinezval, and J. Borowitz, “On the possibility for a gamma-ray laser,” Laser Phys. 5, 323–325 (1995).
|
| [154] |
L. A. Rivlin, “Two-quantum-induced energy release of isomeric nuclei,” Quantum Electron. 34, 23–28 (2004).10.1070/qe2004v034n01abeh002574
|