| Citation: | Kleinschmidt Uwe, Redmer Ronald. A conductivity model for hydrogen based on ab initio simulations[J]. Matter and Radiation at Extremes, 2025, 10(4): 047602. doi: 10.1063/5.0250970 |
| [1] |
T. Guillot, L. N. Fletcher, R. Helled, M. Ikoma, M. R. Line et al., “Giant planets from the inside-out,” in Protostars and Planets VII, edited by S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, and M. Tamura (Astronomical Society of the Pacific Conference Series, San Francisco, 2023), pp. 947–991.
|
| [2] |
M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen et al., “Ab initio simulations for material properties along the Jupiter adiabat,” Astrophys. J., Suppl. Ser. 202, 5 (2012).10.1088/0067-0049/202/1/5
|
| [3] |
M. Preising, M. French, C. Mankovich, F. Soubiran, and R. Redmer, “Material properties of Saturn’s interior from ab initio simulations,” Astrophys. J., Suppl. Ser. 269, 47 (2023).10.3847/1538-4365/ad0293
|
| [4] |
A. Becker, M. Bethkenhagen, C. Kellermann, J. Wicht, and R. Redmer, “Material properties for the interiors of massive giant planets and brown dwarfs,” Astron. J. 156, 149 (2018).10.3847/1538-3881/aad735
|
| [5] |
S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “First-principles equation-of-state table of deuterium for inertial confinement fusion applications,” Phys. Rev. B 84, 224109 (2011).10.1103/physrevb.84.224109
|
| [6] |
B. Militzer, F. González-Cataldo, S. Zhang, K. P. Driver, and F. Soubiran, “First-principles equation of state database for warm dense matter computation,” Phys. Rev. E 103, 013203 (2021).10.1103/physreve.103.013203
|
| [7] |
D. Durante, M. Parisi, D. Serra, M. Zannoni, V. Notaro et al., “Jupiter’s gravity field halfway through the Juno mission,” Geophys. Res. Lett. 47, e2019GL086572, (2020).10.1029/2019gl086572
|
| [8] |
A. P. Ingersoll, “Cassini exploration of the planet Saturn: A comprehensive review,” Space Sci. Rev. 216, 122 (2020).10.1007/s11214-020-00751-1
|
| [9] |
J. E. P. Connerney, A. Adriani, F. Allegrini, F. Bagenal, S. J. Bolton et al., “Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits,” Science 356, 826–832 (2017).10.1126/science.aam5928
|
| [10] |
Y. Kaspi, E. Galanti, A. P. Showman, D. J. Stevenson, T. Guillot et al., “Comparison of the deep atmospheric dynamics of Jupiter and Saturn in light of the Juno and Cassini gravity measurements,” Space Sci. Rev. 216, 84 (2020).10.1007/s11214-020-00705-7
|
| [11] |
F. Bagenal, A. Adriani, F. Allegrini, S. J. Bolton, B. Bonfond et al., “Magnetospheric science objectives of the Juno mission,” Space Sci. Rev. 213, 219–287 (2017).10.1007/s11214-014-0036-8
|
| [12] |
S. J. Bolton, A. Adriani, V. Adumitroaie, M. Allison, J. Anderson et al., “Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft,” Science 356, 821–825 (2017).10.1126/science.aal2108
|
| [13] |
S. M. Wahl, W. B. Hubbard, B. Militzer, T. Guillot, Y. Miguel et al., “Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core,” Geophys. Res. Lett. 44, 4649–4659, (2017).10.1002/2017gl073160
|
| [14] |
U. R. Christensen and J. Wicht, “Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn,” Icarus 196, 16 (2008).10.1016/j.icarus.2008.02.013
|
| [15] |
G. Schubert and K. M. Soderlund, “Planetary magnetic fields: Observations and models,” Phys. Earth Planet. Inter. 187, 92 (2011).10.1016/j.pepi.2011.05.013
|
| [16] |
C. A. Jones, “A dynamo model of Jupiter’s magnetic field,” Icarus 241, 148–159 (2014).10.1016/j.icarus.2014.06.020
|
| [17] |
J. Wicht and U. R. Christensen, “Contributions of Jupiter’s deep-reaching surface winds to magnetic field structure and secular variation,” J. Geophys. Res.: Planets 129, e2023JE007890, (2024).10.1029/2023je007890
|
| [18] |
S. Kumar, A. J. Poser, M. Schöttler, U. Kleinschmidt, W. Dietrich et al., “Ionization and transport in partially ionized multicomponent plasmas: Application to atmospheres of hot Jupiters,” Phys. Rev. E 103, 063203 (2021).10.1103/physreve.103.063203
|
| [19] |
W. Dietrich, S. Kumar, A. J. Poser, M. French, N. Nettelmann et al., “Magnetic induction processes in hot Jupiters, application to KELT-9b,” Mon. Not. R. Astron. Soc. 517, 3113 (2022).10.1093/mnras/stac2849
|
| [20] |
P. Wulff, U. R. Christensen, W. Dietrich, and J. Wicht, “The effects of a stably stratified region with radially varying electrical conductivity on the formation of zonal winds on gas planets,” J. Geophys. Res.: Planets 129, e2023JE008042, (2024).10.1029/2023je008042
|
| [21] |
B. Holst, M. French, and R. Redmer, “Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen,” Phys. Rev. B 83, 235120 (2011).10.1103/physrevb.83.235120
|
| [22] |
M. French and R. Redmer, “Electronic transport in partially ionized water plasmas,” Phys. Plasmas 24, 092306 (2017).10.1063/1.4998753
|
| [23] |
M. French, G. Röpke, M. Schörner, M. Bethkenhagen, M. P. Desjarlais et al., “Electronic transport coefficients from density functional theory across the plasma plane,” Phys. Rev. E 105, 065204 (2022).10.1103/physreve.105.065204
|
| [24] |
C. E. Starrett, N. R. Shaffer, D. Saumon, R. Perriot, T. Nelson et al., “Model for the electrical conductivity in dense plasma mixtures,” High Energy Density Phys. 36, 100752 (2020).10.1016/j.hedp.2020.100752
|
| [25] |
J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions,” Rev. Mod. Phys. 84, 1607–1653 (2012).10.1103/revmodphys.84.1607
|
| [26] |
M. Bonitz, J. Vorberger, M. Bethkenhagen, M. P. Böhme, D. M. Ceperley et al., “Toward first principles-based simulations of dense hydrogen,” Phys. Plasmas 31, 110501 (2024).10.1063/5.0219405
|
| [27] |
W. B. Hubbard, “Studies in stellar evolution. V. Transport coefficients of degenerate stellar matter,” Astrophys. J. 146, 858–870 (1966).10.1086/148961
|
| [28] |
E. Braun, “Transport coefficients in a plasma. I. Pure gas,” Phys. Fluids 10, 731–736 (1967).10.1063/1.1762182
|
| [29] |
E. Flowers and N. Itoh, “Transport properties of dense matter,” Astrophys. J. 206, 218–242 (1976).10.1086/154375
|
| [30] |
H. Minoo, C. Deutsch, and J. P. Hansen, “Electronic transport in dense fully ionized hydrogen,” Phys. Rev. A. 14, 840–853 (1976).10.1103/physreva.14.840
|
| [31] |
L. Spitzer and R. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977 (1953).10.1103/physrev.89.977
|
| [32] |
J. M. Ziman, “A theory of the electrical properties of liquid metals. I: The monovalent metals,” Philos. Mag. 6, 1013 (1961).10.1080/14786436108243361
|
| [33] |
S. Ichimaru and S. Tanaka, “Theory of interparticle correlations in dense, high-temperature plasmas. V. Electric and thermal conductivities,” Phys. Rev. A. 32, 1790 (1985).10.1103/physreva.32.1790
|
| [34] |
G. Röpke and R. Redmer, “Electrical conductivity of nondegenerate, fully ionized plasmas,” Phys. Rev. A. 39, 907–910 (1989).10.1103/physreva.39.907
|
| [35] |
G. Röpke, “Quantum-statistical approach to the electrical conductivity of dense, high-temperature plasmas,” Phys. Rev. A. 38, 3001–3016 (1988).10.1103/physreva.38.3001
|
| [36] |
H. Reinholz, G. Röpke, S. Rosmej, and R. Redmer, “Conductivity of warm dense matter including electron-electron collisions,” Phys. Rev. E 91, 043105 (2015).10.1103/physreve.91.043105
|
| [37] |
W. A. Stygar, G. A. Gerdin, and D. L. Fehl, “Analytic electrical-conductivity tensor of a nondegenerate Lorentz plasma,” Phys. Rev. E 66, 046417 (2002).10.1103/physreve.66.046417
|
| [38] |
V. E. Fortov, V. Y. Ternovoi, M. V. Zhernokletov, M. A. Mochalov, A. L. Mikhailov et al., “Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures,” J. Exp. Theor. Phys. 97, 259 (2003).10.1134/1.1608993
|
| [39] |
L. J. Stanek, A. Kononov, S. B. Hansen, B. M. Haines, S. X. Hu et al., “Review of the second charged-particle transport coefficient code comparison workshop,” Phys. Plasmas 31, 052104 (2024).10.1063/5.0198155
|
| [40] |
Z. A. Johnson, L. G. Silvestri, G. M. Petrov, L. G. Stanton, and M. S. Murillo, “Comparison of transport models in dense plasmas,” Phys. Plasmas 31, 082701 (2024).10.1063/5.0204226
|
| [41] |
Y. T. Lee and R. M. More, “An electron conductivity model for dense plasmas,” Phys. Fluids 27, 1273 (1984).10.1063/1.864744
|
| [42] |
L. D. Landau and E. M. Lifshitz, Physical Kinetics: Course of Theoretical Physics (Pergamon Press, Oxford, 1981), Vol. 10, pp. 177–181.
|
| [43] |
H. A. Lorentz, “Le mouvement des électrons dans les métaux,” Arch. Neerl. 10, 336 (1905).
|
| [44] |
M. P. Desjarlais, “Practical improvements to the Lee-More conductivity near the metal-insulator transition,” Contrib. Plasma Phys. 41, 267–270 (2001).10.1002/1521-3986(200103)41:2/3<267::aid-ctpp267>3.3.co;2-g
|
| [45] |
P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).10.1103/physrev.136.b864
|
| [46] |
W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).10.1103/physrev.140.a1133
|
| [47] |
N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441 (1965).10.1103/physrev.137.a1441
|
| [48] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.54.11169
|
| [49] |
G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558 (1993).10.1103/physrevb.47.558
|
| [50] |
G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251 (1994).10.1103/physrevb.49.14251
|
| [51] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/physrevlett.77.3865
|
| [52] |
P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).10.1103/physrevb.50.17953
|
| [53] |
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).10.1103/physrevb.59.1758
|
| [54] |
M. Valiev and J. H. Weare, “The projector-augmented plane wave method applied to molecular bonding,” J. Phys. Chem. A 103, 10588 (1999).10.1021/jp9929770
|
| [55] |
A. Baldereschi, “Mean-value point in the Brillouin zone,” Phys. Rev. B 7, 5212 (1973).10.1103/physrevb.7.5212
|
| [56] |
S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511 (1984).10.1063/1.447334
|
| [57] |
W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695 (1985).10.1103/physreva.31.1695
|
| [58] |
H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188 (1976).10.1103/physrevb.13.5188
|
| [59] |
M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B 73, 045112 (2006).10.1103/physrevb.73.045112
|
| [60] |
R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).10.1143/jpsj.12.570
|
| [61] |
D. A. Greenwood, “The Boltzmann equation in the theory of electrical conduction in metals,” Proc. Phys. Soc. 71, 585 (1958).10.1088/0370-1328/71/4/306
|
| [62] |
W. W. Focke, “Correlating thermal-conductivity data for ternary liquid mixtures,” Int. J. Thermophys. 29, 1342–1360 (2008).10.1007/s10765-008-0465-2
|
| [63] |
M. P. Desjarlais, C. R. Scullard, L. X. Benedict, H. D. Whitley, and R. Redmer, “Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering,” Phys. Rev. E 95, 033203 (2017).10.1103/physreve.95.033203
|
| [64] |
G. Röpke, “Electrical conductivity of charged particle systems and Zubarev’s nonequilibrium statistical operator method,” Theor. Math. Phys. 194, 74–104 (2018).10.1134/s0040577918010063
|
| [65] |
D. O. Gericke, M. S. Murillo, and M. Schlanges, “Dense plasma temperature equilibration in the binary collision approximation,” Phys. Rev. E 65, 036418 (2002).10.1103/physreve.65.036418
|
| [66] |
W. Ebeling and W. Richert, “Thermodynamic functions of nonideal hydrogen plasmas,” Ann. Phys. 494, 362–370 (1982).10.1002/andp.19824940508
|
| [67] |
D. Beule, W. Ebeling, A. Förster, H. Juranek, S. Nagel et al., “Equation of state for hydrogen below 10000 K: From the fluid to the plasma,” Phys. Rev. B 59, 14177 (1999).10.1103/physrevb.59.14177
|
| [68] |
M. Ross, “Matter under extreme conditions of temperature and pressure,” Rep. Prog. Phys. 48, 1–52 (1985).10.1088/0034-4885/48/1/001
|
| [69] |
M. Ross, F. H. Ree, and D. A. Young, “The equation of state of molecular hydrogen at very high density,” J. Chem. Phys. 79, 1487–1494 (1983).10.1063/1.445939
|
| [70] |
H. Juranek, R. Redmer, and Y. Rosenfeld, “Fluid variational theory for pressure dissociation in dense hydrogen: Multicomponent reference system and nonadditivity effects,” J. Chem. Phys. 117, 1768 (2002).10.1063/1.1486210
|
| [71] |
D. Saumon, G. Chabrier, and H. M. van Horn, “An equation of state for low-mass stars and giant planets,” Astrophys. J., Suppl. Ser. 99, 713 (1995).10.1086/192204
|
| [72] |
D. G. Hummer and D. Mihalas, “The equation of state for stellar envelopes. I. An occupation probability formalism for the truncation of internal partition functions,” Astrophys. J. 331, 794 (1988).10.1086/166600
|
| [73] |
D. Mihalas, W. Däppen, and D. G. Hummer, “The equation of state for stellar envelopes. II. Algorithm and selected results,” Astrophys. J. 331, 815 (1988).10.1086/166601
|
| [74] |
W. Däppen, D. Mihalas, D. G. Hummer, and B. W. Mihalas, “The equation of state for stellar envelopes. III. Thermodynamic quantities,” Astrophys. J. 332, 261 (1988).10.1086/166650
|
| [75] |
D. Mihalas, D. G. Hummer, B. W. Mihalas, and W. Däppen, “The equation of state for stellar envelopes. IV. Thermodynamic quantities and selected ionization fractions for six elemental mixes,” Astrophys. J. 350, 300 (1990).10.1086/168383
|
| [76] |
V. E. Fortov, R. I. Ilkaev, V. A. Arinin, V. V. Burtzev, V. A. Golubev et al., “Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures,” Phys. Rev. Lett. 99, 185001 (2007).10.1103/physrevlett.99.185001
|
| [77] |
F. E. Höhne, R. Redmer, G. Röpke, and H. Wegener, “Linear response theory for thermoelectric transport coefficients of partially ionized plasma,” Physica A 128, 643–675 (1984).10.1016/0378-4371(84)90200-0
|
| [78] |
H. Reinholz, R. Redmer, and S. Nagel, “Thermodynamic and transport properties of dense hydrogen plasmas,” Phys. Rev. E 52, 5368–5386 (1995).10.1103/physreve.52.5368
|
| [79] |
J. R. Adams, N. S. Shilkin, V. E. Fortov, V. K. Gryaznov, V. B. Mintsev et al., “Coulomb contribution to the direct current electrical conductivity of dense partially ionized plasmas,” Phys. Plasmas 14, 062303 (2007).10.1063/1.2744366
|
| [80] |
K. Batygin, D. J. Stevenson, and P. H. Bodenheimer, “Evolution of ohmically heated hot Jupiters,” Astrophys. J. 738, 1 (2011).10.1088/0004-637x/738/1/1
|
| [81] |
M. Bethkenhagen, B. B. L. Witte, M. Schörner, G. Röpke, T. Döppner et al., “Carbon ionization at gigabar pressures: An ab initio perspective on astrophysical high-density plasmas,” Phys. Rev. Res. 2, 023260 (2020).10.1103/physrevresearch.2.023260
|
| [82] |
M. Bethkenhagen, M. Schörner, and R. Redmer, “Insights on the electronic structure of high-density beryllium from ab initio simulations,” Phys. Rev. Res. (submitted) (2024).
|
| [83] |
J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. Lett. 115, 036402 (2015).10.1103/physrevlett.115.036402
|
| [84] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118, 8207 (2003).10.1063/1.1564060
|
| [85] |
F. Lambert, V. Recoules, A. Decoster, J. Clérouin, and M. Desjarlais, “On the transport coefficients of hydrogen in the inertial confinement fusion regime,” Phys. Plasmas 18, 056306 (2011).10.1063/1.3574902
|
| [86] |
I. M. Bespalov and A. Ya. Polishchuk, Methods of Calculation of Transport Coeffecients of Plasmas over a Wide Range of Parameters ([in Russian], IVTAN Preprint No. 1-257, Institute of High Temperatures, Russian Academy of Sciences, Moscow, 1988).
|
| [87] |
W. Ebeling, A. Förster, V. E. Fortov, V. K. Gryaznov, and A. Y. Polishchuk, in Thermophysical Properties of Hot Dense Plasmas, edited by W. Ebeling, W. Meiling, A. Uhlmann, and B. Wilhelmi (Teubner Verlagsgesellschaft, Stuttgart, 1991), p. 214.
|
| [88] |
S. Cassisi, A. Y. Potekhin, A. Pietrinfernie, M. Catelan, and M. Salaris, “Updated electron-conduction opacities: The impact on low-mass stellar models,” Astrophys. J. 661, 1094–1104 (2007).10.1086/516819
|
| [89] |
S. Blouin, N. R. Shaffer, D. Saumon, and C. E. Starrett, “New conductive opacities for white dwarf envelopes,” Astrophys. J. 899, 46 (2020).10.3847/1538-4357/ab9e75
|
| [90] |
S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett. 76, 1860 (1996).10.1103/physrevlett.76.1860
|
| [91] |
W. J. Nellis, S. T. Weir, and A. C. Mitchell, “Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. B 59, 3434 (1999).10.1103/physrevb.59.3434
|
| [92] |
G. Röpke, M. Schörner, R. Redmer, and M. Bethkenhagen, “Virial expansion of the electrical conductivity of hydrogen plasmas,” Phys. Rev. E 104, 045204 (2021).10.1103/physreve.104.045204
|
| [93] |
V. Y. Ternovoi, A. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev et al., “Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 GPa,” Physica B 265, 6–11 (1999).10.1016/s0921-4526(98)01303-9
|
| [94] |
P. A. Sterne, S. B. Hansen, B. G. Wilson, and W. A. Isaacs, “Equation of state, occupation probabilities and conductivities in the average atom Purgatorio code,” High Energy Density Phys. 3, 278–282 (2007).10.1016/j.hedp.2007.02.037
|