Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
Zhao Xinyu, Ren Fenglin, He Jinze, Pan Yue, Tang Hu, Zhang Xiaoming, Yao Di, Liu Ran, Hu Kuo, Liu Zhaodong, Liu Bingbing. Ultrahigh-pressure generation above 50 GPa in a Kawai-type large-volume press[J]. Matter and Radiation at Extremes, 2025, 10(4): 047801. doi: 10.1063/5.0249620
Citation: Zhao Xinyu, Ren Fenglin, He Jinze, Pan Yue, Tang Hu, Zhang Xiaoming, Yao Di, Liu Ran, Hu Kuo, Liu Zhaodong, Liu Bingbing. Ultrahigh-pressure generation above 50 GPa in a Kawai-type large-volume press[J]. Matter and Radiation at Extremes, 2025, 10(4): 047801. doi: 10.1063/5.0249620

Ultrahigh-pressure generation above 50 GPa in a Kawai-type large-volume press

doi: 10.1063/5.0249620
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: hukuo@jlu.edu.cn; liu_zhaodong@jlu.edu.cn; and liubb@jlu.edu.cn
  • Received Date: 2024-11-19
  • Accepted Date: 2025-04-10
  • Available Online: 2025-11-28
  • Publish Date: 2025-07-01
  • The ability to generate high pressures in a large-volume press (LVP) is crucial for the study of matter under extreme conditions. Here, we have achieved ultrahigh pressures of ∼60 and 50 GPa, respectively, at room temperature and a high temperature of 1900 K within a millimeter-sized sample volume in a Kawai-type LVP (KLVP) using hard tungsten carbide (WC) and newly designed assemblies. The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe2O3 pressure standard upon compression. The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils. Our study has enabled the routine generation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs. This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs, but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    Xinyu Zhao: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Fenglin Ren: Investigation (equal). Jinze He: Investigation (equal). Yue Pan: Investigation (equal). Hu Tang: Investigation (equal); Resources (equal). Xiaoming Zhang: Investigation (equal). Di Yao: Investigation (equal). Ran Liu: Investigation (equal). Kuo Hu: Funding acquisition (equal); Investigation (equal); Project administration (equal); Resources (equal); Writing – original draft (equal). Zhaodong Liu: Conceptualization (equal); Funding acquisition (equal); Investigation (equal); Resources (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Bingbing Liu: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Supervision (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    G. Schubert, Treatise on Geophysics (Elsevier, 2015).
    [2]
    E. Ito, G. Price, and G. Schubert, “Theory and practice—Multianvil cells and high-pressure experimental methods,” Treatise Geophys. 2, 197–230 (2007).10.1016/B978-044452748-6.00036-5
    [3]
    P. F. McMillan, “Chemistry at high pressure,” Chem. Soc. Rev. 35, 855–857 (2006).10.1039/b610410j
    [4]
    T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya, “Ultrahard polycrystalline diamond from graphite,” Nature 421, 599–600 (2003).10.1038/421599b
    [5]
    Y. Shang, Z. Liu, J. Dong, M. Yao, Z. Yang et al., “Ultrahard bulk amorphous carbon from collapsed fullerene,” Nature 599, 599–604 (2021).10.1038/s41586-021-03882-9
    [6]
    H. Tang, X. Yuan, Y. Cheng, H. Fei, F. Liu et al., “Synthesis of paracrystalline diamond,” Nature 599, 605–610 (2021).10.1038/s41586-021-04122-w
    [7]
    M. Nishi, T. Irifune, J. Tsuchiya, Y. Tange, Y. Nishihara et al., “Stability of hydrous silicate at high pressures and water transport to the deep lower mantle,” Nat. Geosci. 7, 224–227 (2014).10.1038/ngeo2074
    [8]
    N. Kawai, “A static high pressure apparatus with tapering multi-pistons forming a sphere. I,” Proc. Jpn. Acad. 42, 385–388 (1966).10.2183/pjab1945.42.385
    [9]
    N. Kawai and S. Endo, “The generation of ultrahigh hydrostatic pressures by a split sphere apparatus,” Rev. Sci. Instrum. 41, 1178–1181 (1970).10.1063/1.1684753
    [10]
    H. Keppler and D. J. Frost, “Introduction to minerals under extreme conditions,” in Mineral Behaviour at Extreme Conditions, edited by R. Miletich (GeoScienceWorld, 2005), Vol. 7.10.1180/EMU-notes.7.1
    [11]
    T. Irifune, “Frontiers in deep earth mineralogy using new large-volume D-DIA and KMA apparatus,” Rev. High Pressure Sci. Technol. 20, 158 (2010).10.4131/jshpreview.20.158
    [12]
    D. Yamazaki, E. Ito, T. Yoshino, N. Tsujino, A. Yoneda et al., “High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3,” C. R. Geosci. 351, 253–259 (2019).10.1016/j.crte.2018.07.004
    [13]
    D. Yamazaki, E. Ito, T. Yoshino, N. Tsujino, A. Yoneda et al., “Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite,” Phys. Earth Planet. Inter. 228, 262–267 (2014).10.1016/j.pepi.2014.01.013
    [14]
    Y. Tange, T. Irifune, and K.-I. Funakoshi, “Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils,” High Pressure Res. 28, 245–254 (2008).10.1080/08957950802208936
    [15]
    T. Kunimoto, T. Irifune, Y. Tange, and K. Wada, “Pressure generation to 50 GPa in Kawai-type multianvil apparatus using newly developed tungsten carbide anvils,” High Pressure Res. 36, 97–104 (2016).10.1080/08957959.2016.1148149
    [16]
    T. Ishii, D. Yamazaki, N. Tsujino, F. Xu, Z. Liu et al., “Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils,” High Pressure Res. 37, 507–515 (2017).10.1080/08957959.2017.1375491
    [17]
    X. Hou, Y. Shang, L. Chen, B. Feng, Y. Zhao et al., “Ultrahigh pressure generation at high temperatures in a Walker-type large-volume press and multiple applications,” Engineering 45, 155 (2025).10.1016/j.eng.2023.03.023
    [18]
    Y.-C. Shang, F.-R. Shen, X.-Y. Hou, L.-Y. Chen, K. Hu et al., “Pressure generation above 35 GPa in a Walker-type large-volume press,” Chin. Phys. Lett. 37, 80701 (2020).10.1088/0256-307X/37/8/080701
    [19]
    T. Ishii, Z. Liu, and T. Katsura, “A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils,” Engineering 5, 434–440 (2019).10.1016/j.eng.2019.01.013
    [20]
    T. Ishii, L. Shi, R. Huang, N. Tsujino, D. Druzhbin et al., “Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils,” Rev. Sci. Instrum. 87, 024501 (2016).10.1063/1.4941716
    [21]
    B. Feng, L. Xie, X. Hou, S. Liu, L. Chen et al., “A virtual thermometer for ultrahigh-temperature–pressure experiments in a large-volume press,” Matter Radiat. Extremes 9, 047401 (2024).10.1063/5.0184031
    [22]
    E. A. Ekimov, V. A. Sidorov, K. I. Maslakov, B. P. Sirotinkin, M. D. Krotova et al., “Influence of growth medium composition on the incorporation of boron in HPHT diamond,” Diam. Relat. Mater. 89, 101–107 (2018).10.1016/j.diamond.2018.08.010
    [23]
    Z. Wang, Z. Wang, H. Zhao, B. Li, Q. Guo et al., “Behavior of boron and nitrogen impurities in diamonds synthesized at high pressure and high temperature,” Int. J. Refract. Met. Hard Mater. 125, 106902 (2024).10.1016/j.ijrmhm.2024.106902
    [24]
    K. J. Dunn and F. P. Bundy, “Materials and techniques for pressure calibration by resistance-jump transitions up to 500 kilobars,” Rev. Sci. Instrum. 49, 365–370 (1978).10.1063/1.1135408
    [25]
    A. Ohtani, M. Motobayashi, and A. Onodera, “Polymorphism of ZnTe at elevated pressure,” Phys. Lett. 75, 435–437 (1980).10.1016/0375-9601(80)90866-x
    [26]
    A. Onodera and A. Ohtani, “Fixed points for pressure calibration above 100 kbars related to semiconductor-metal transitions,” J. Appl. Phys. 51, 2581–2585 (1980).10.1063/1.327984
    [27]
    S. V. Ovsyannikov and V. V. Shchennikov, “Phase transitions investigation in ZnTe by thermoelectric power measurements at high pressure,” Solid state Commun. 132, 333–336 (2004).10.1016/j.ssc.2004.07.062
    [28]
    E. Ito, T. Katsura, D. Yamazaki, A. Yoneda, M. Tado et al., “A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes,” Phys. Earth Planet. Inter. 174, 264–269 (2009).10.1016/j.pepi.2008.11.007
    [29]
    Z. Liu, M. Nishi, T. Ishii, H. Fei, N. Miyajima et al., “Phase relations in the system MgSiO3–Al2O3 up to 2300 K at lower mantle pressures,” J. Geophys. Res.: Solid Earth 122, 7775–7788, (2017).10.1002/2017jb014579
    [30]
    Z. Liu, T. Irifune, M. Nishi, Y. Tange, T. Arimoto et al., “Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K,” Phys. Earth Planet. Inter. 257, 18–27 (2016).10.1016/j.pepi.2016.05.006
    [31]
    D. J. Durben and G. H. Wolf, “High-temperature behavior of metastable MgSiO3 perovskite: A Raman spectroscopic study,” Am. Mineral. 77, 890–893 (1992).
    [32]
    K. Litasov, E. Ohtani, F. Langenhorst, H. Yurimoto, T. Kubo et al., “Water solubility in Mg-perovskites and water storage capacity in the lower mantle,” Earth Planet Sci. Lett. 211, 189–203 (2003).10.1016/s0012-821x(03)00200-0
    [33]
    Y. Zhang and Z. Xu, “Atomic radii of noble gas elements in condensed phases,” Am. Mineral. 80, 670–675 (1995).10.2138/am-1995-7-803
    [34]
    N. Tsujino, Y. Nishihara, D. Yamazaki, Y. Seto, Y. Higo et al., “Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite,” Nature 539, 81–84 (2016).10.1038/nature19777
    [35]
    L. Wang and Y. Fei, “A partially equilibrated initial mantle and core indicated by stress-induced percolative core formation through a bridgmanite matrix,” Sci. Adv. 9, eade3010 (2023).10.1126/sciadv.ade3010
    [36]
    T. Kunimoto, T. Irifune, and H. Sumiya, “Pressure generation in a 6-8-2 type multi-anvil system: A performance test for third-stage anvils with various diamonds,” High Pressure Res. 28, 237–244 (2008), Geodynamics Research Center, Ehime University, Matsuyama, Japan Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan Japan Synchrotron Radiation Research Institute, Sayo, Japan Fuji Die Co., Ltd., Hadano, Japan.10.1080/08957950802246530
    [37]
    N. Soga and O. L. Anderson, “High-temperature elastic properties of polycrystalline MgO and Al2O3,” J. Am. Ceram. Soc. 49, 355–359 (1966).10.1111/j.1151-2916.1966.tb13283.x
    [38]
    D. J. Poferl, N. C. Gardner, and J. C. Angus, “Growth of boron-doped diamond seed crystals by vapor deposition,” J. Appl. Phys. 44, 1428–1434 (1973).10.1063/1.1662389
    [39]
    W. A. Crichton, A. R. Thomson, A. Rosenthal, K. Spektor, D. Druzhbin et al., “EBS status of the large-volume press at beamline ID06-LVP,” High Pressure Res. 44, 217–247 (2024).10.1080/08957959.2024.2379354
    [40]
    H. Keppler, D. Frost, and R. Miletich, Mineral Behaviour at Extreme Conditions (Eotvos University Press, Budapest, 2005).
    [41]
    T. Irifune, F. Isobe, and T. Shinmei, “A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond,” Phys. Earth Planet. Inter. 228, 255–261 (2014).10.1016/j.pepi.2013.09.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return