Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
Ehret Michael, Vladisavlevici Iuliana-Mariana, Bradford Philip Wykeham, Cikhardt Jakub, Filippov Evgeny, Henares Jose Luis, Martín Rubén Hernández, de Luis Diego, Pérez-Hernández José Antonio, Vicente Pablo, Burian Tomas, García-García Enrique, Hernández Juan, Mendez Cruz, Ruíz Marta Olivar, Varela Óscar, Rodríguez Frías Maria Dolores, Santos João Jorge, Gatti Giancarlo. Currents from relativistic laser-plasma interaction as a novel metrology for the system stability of high-repetition-rate laser secondary sources[J]. Matter and Radiation at Extremes, 2025, 10(2): 027203. doi: 10.1063/5.0247778
Citation: Ehret Michael, Vladisavlevici Iuliana-Mariana, Bradford Philip Wykeham, Cikhardt Jakub, Filippov Evgeny, Henares Jose Luis, Martín Rubén Hernández, de Luis Diego, Pérez-Hernández José Antonio, Vicente Pablo, Burian Tomas, García-García Enrique, Hernández Juan, Mendez Cruz, Ruíz Marta Olivar, Varela Óscar, Rodríguez Frías Maria Dolores, Santos João Jorge, Gatti Giancarlo. Currents from relativistic laser-plasma interaction as a novel metrology for the system stability of high-repetition-rate laser secondary sources[J]. Matter and Radiation at Extremes, 2025, 10(2): 027203. doi: 10.1063/5.0247778

Currents from relativistic laser-plasma interaction as a novel metrology for the system stability of high-repetition-rate laser secondary sources

doi: 10.1063/5.0247778
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: michael.ehret@eli-beams.eu
  • Received Date: 2024-11-08
  • Accepted Date: 2025-02-10
  • Available Online: 2025-03-01
  • Publish Date: 2025-03-01
  • This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources, taking as an example ion acceleration by target normal sheath acceleration. The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from ∼0.70 to 0.94. kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons. Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates. Thus, return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability. In particular, in two parametric studies of laser-driven ion acceleration, we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados: first, the size of the irradiated area is varied at best compression of the laser pulse; second, the pulse duration is varied by means of induced group delay dispersion at best focus. This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    M.E. and I.-M.V. performed the data acquisition, curation and analysis. M.E. wrote the first draft of the manuscript. J.C., P.W.B., M.E., and T.B. commissioned the TCM device at PALS. J.L.H. organized the beamtime at CLPU. J.A.P.-H. implemented the “online” pulse duration metrology line and was in charge of the temporal measurements at high power and managed the laser beam optimization during the experiment. D.d.L. and R.H.M. managed implementation of the device. P.V. worked on CAD. M.E., D.d.L., and R.L. contributed to the conception and design of the study. E.F. performed the analysis and interpretation of the ion spectra. All authors were involved with the underlying experimental work. All authors contributed to manuscript improvement, and read and approved the submitted version.
    Michael Ehret: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Funding acquisition (equal); Investigation (lead); Methodology (lead); Project administration (equal); Resources (lead); Software (lead); Supervision (lead); Validation (lead); Visualization (lead); Writing – original draft (lead); Writing – review & editing (lead). Iuliana-Mariana Vladisavlevici: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (lead); Methodology (equal); Software (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Philip Wykeham Bradford: Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Supervision (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Jakub Cikhardt: Funding acquisition (equal); Methodology (equal); Project administration (equal); Resources (equal); Supervision (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Evgeny Filippov: Formal analysis (equal); Investigation (equal); Methodology (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Jose Luis Henares: Funding acquisition (equal); Investigation (equal); Project administration (equal); Resources (equal); Writing – review & editing (equal). Rubén Hernández Martín: Investigation (equal); Methodology (equal); Resources (equal). Diego de Luis: Conceptualization (equal); Data curation (equal); Methodology (equal); Resources (equal). José Antonio Pérez-Hernández: Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Project administration (equal); Resources (equal); Writing – review & editing (equal). Pablo Vicente: Visualization (equal). Tomas Burian: Investigation (equal); Methodology (equal); Resources (equal). Enrique García-García: Methodology (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Juan Hernández: Methodology (equal). Cruz Mendez: Methodology (equal); Supervision (equal). Marta Olivar Ruíz: Investigation (equal); Methodology (equal). Óscar Varela: Investigation (equal); Methodology (equal). Maria Dolores Rodríguez Frías: Resources (equal); Supervision (equal). João Jorge Santos: Resources (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Giancarlo Gatti: Project administration (equal); Resources (equal); Supervision (equal).
    Author Contributions
    The raw data and numerical methods that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).10.1038/187493a0
    [2]
    M. DiDomenico, J. E. Geusic, H. M. Marcos, and R. G. Smith, “Generation of ultrashort optical pulses by mode locking the YAIG: Nd laser,” Appl. Phys. Lett. 8(7), 180–183 (1966).10.1063/1.1754544
    [3]
    P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quant. Electron. 24(2), 398–403 (1988).10.1109/3.137
    [4]
    M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue et al., “085-PW, 33-fs Ti:sapphire laser,” Opt. Lett. 28(17), 1594–1596 (2003).10.1364/OL.28.001594
    [5]
    [6]
    T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong et al., “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20, 10807 (2012).10.1364/oe.20.010807
    [7]
    W. P. Leemans, J. Daniels, A. Deshmukh, A. J. Gonsalves, A. Magana et al., “Bella laser and operations,” in Proceedings of the PAC 2013, Pasadena, CA, 29 Sep.–4 Oct. 2013 (CERN, 2013), pp. 1097–1100.
    [8]
    T. M. Jeong and J. Lee, “Femtosecond petawatt laser,” Ann. Phys. 526, 157 (2014).10.1002/andp.201300192
    [9]
    C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).10.1017/hpl.2014.52
    [10]
    Y. Wang, S. Wang, A. Rockwood, B. M. Luther, R. Hollinger et al., “0.85 PW laser operation at 3.3 Hz and high-contrast ultrahigh-intensity λ = 400 nm second-harmonic beamline,” Opt. Lett. 42, 3828–3831 (2017).10.1364/ol.42.003828
    [11]
    J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee et al., “42 PW, 20 fs Ti:sapphire laser at 01 Hz,” Opt. Lett. 42, 2058 (2017).10.1364/ol.42.002058
    [12]
    W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu et al., “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43, 5681 (2018).10.1364/ol.43.005681
    [13]
    L. Roso, “High repetition rate petawatt lasers,” EPJ Web Conf. 167, 01001 (2018).10.1051/epjconf/201816701001
    [14]
    F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu et al., “High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability,” High Power Laser Sci. Eng. 8, e43 (2020).10.1017/hpl.2020.41
    [15]
    K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, P. Antici et al., “Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level,” Matter Radiat. Extremes 6, 064402 (2021).10.1063/5.0065138
    [16]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee et al., “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/OPTICA.420520
    [17]
    S. Borneis, T. Laštovička, M. Sokol, T.-M. Jeong, F. Condamine et al., “Design, installation and commissioning of the ELI-beamlines high-power, high-repetition rate HAPLS laser beam transport system to P3,” High Power Laser Sci. Eng. 9, e30 (2021).10.1017/hpl.2021.16
    [18]
    C. Radier, O. Chalus, M. Charbonneau, S. Thambirajah, G. Deschamps et al., “10 PW peak power femtosecond laser pulses at ELI-NP,” High Power Laser Sci. Eng. 10, e21 (2022).10.1017/hpl.2022.11
    [19]
    S. Hakimi, L. Obst-Huebl, A. Huebl, K. Nakamura, S. S. Bulanov et al., “Laser–solid interaction studies enabled by the new capabilities of the iP2 BELLA PW beamline,” Phys. Plasmas 29(8), 083102 (2022).10.1063/5.0089331
    [20]
    P. A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts et al., “Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids,” Phys. Plasmas 6, 2150–2156 (1999).10.1063/1.873466
    [21]
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).10.1088/0034-4885/75/5/056401
    [22]
    M. Borghesi, “Ion acceleration: TNSA and beyond,” in Laser-Driven Sources of High Energy Particles and Radiation (Springer, 2019).
    [23]
    T. Tajima and V. Malka, “Laser plasma accelerators,” Plasma Phys. Controlled Fusion 62, 034004 (2020).10.1088/1361-6587/ab6da4
    [24]
    C. M. Lazzarini, G. M. Grittani, P. Valenta, I. Zymak, R. Antipenkov et al., “Ultrarelativistic electron beams accelerated by terawatt scalable kHz laser,” Phys. Plasmas 31, 030703 (2024).10.1063/5.0189051
    [25]
    R. Lichters, J. Meyer-ter-Vehn, and A. Pukhov, “Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity,” Phys. Plasmas 3, 3425 (1996).10.1063/1.871619
    [26]
    P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381 (2007).10.1038/nphys620
    [27]
    V. Bleko, P. Karataev, A. Konkov, K. Kruchinin, G. Naumenko et al., “Coherent Cherenkov radiation as an intense THz source,” J. Phys.: Conf. Ser. 732, 012006 (2016).10.1088/1742-6596/732/1/012006
    [28]
    F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews et al., “A study of picosecond laser–solid interactions up to 1019 W cm−2,” Phys. Plasmas 4, 447 (1997).10.1063/1.872103
    [29]
    K. Quinn, P. A. Wilson, C. A. Cecchetti, B. Ramakrishna, L. Romagnani et al., “Laser-driven ultrafast field propagation on solid surfaces,” Phys. Rev. Lett. 102, 194801 (2009).10.1103/PhysRevLett.102.194801
    [30]
    J.-L. Dubois, F. Lubrano-Lavaderci, D. Raffestin, J. Ribolzi, J. Gazave et al., “Target charging in short-pulse-laser–plasma experiments,” Phys. Rev. E 89, 013102 (2014).10.1103/PhysRevE.89.013102
    [31]
    S. Tokita, S. Sakabe, T. Nagashima, M. Hashida, and S. Inoue, “Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses,” Sci. Rep. 5, 8268 (2015).10.1038/srep08268
    [32]
    S. Kar, H. Ahmed, G. Nersisyan, S. Brauckmann, F. Hanton et al., “Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses,” Phys. Plasmas 23, 055711 (2016).10.1063/1.4948725
    [33]
    M. Ehret, J. Cikhardt, P. Bradford, I.-M. Vladisavlevici, T. Burian et al., “High-repetition-rate source of nanosecond duration kA-current pulses driven by relativistic laser pulses,” High Power Laser Sci. Eng. 12, e33 (2024).10.1017/hpl.2024.14
    [34]
    D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle et al., “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293 (2017).10.1038/nphoton.2017.46
    [35]
    J. Faure, D. Gustas, D. Guénot, A. Vernier, F. Böhle et al., “Review of recent progress on laser-plasma acceleration at kHz repetition rate,” Plasma Phys. Controlled Fusion 61(1), 014012 (2018).10.1088/1361-6587/aae047
    [36]
    J. L. Henares, P. Puyuelo-Valdes, C. Salgado-López, J. I. Apiñaniz, P. Bradford et al., “Proton and helium ions acceleration in near-critical density gas targets by short-pulse Ti:Sa PW-class laser,” J. Plasma Phys. 89(6), 965890601 (2023).10.1017/S0022377823001332
    [37]
    V. Ospina-Bohórquez, C. Salgado-López, M. Ehret, S. Malko, M. Salvadori et al., “Laser-driven ion and electron acceleration from near-critical density gas targets: Towards high-repetition rate operation in the 1 PW, sub-100 fs laser interaction regime,” Phys. Rev. Res. 6, 023268 (2024).10.1103/PhysRevResearch.6.023268
    [38]
    P. McKenna, K. W. D. Ledingham, I. Spencer, T. McCany, R. P. Singhal et al., “Characterization of multiterawatt laser-solid interactions for proton acceleration,” Rev. Sci. Instrum. 73, 4176–4184 (2002).10.1063/1.1516855
    [39]
    T. Nayuki, Y. Oishi, T. Fujii, K. Nemoto, T. Kayoiji et al., “Thin tape target driver for laser ion accelerator,” Rev. Sci. Instrum. 74, 3293 (2003).10.1063/1.1578156
    [40]
    M. Noaman-ul-Haq, H. Ahmed, T. Sokollik, L. Yu, Z. Liu et al., “Statistical analysis of laser driven protons using a high-repetition-rate tape drive target system,” Phys. Rev. Acc. Beams 20, 041301 (2017).10.1103/PhysRevAccelBeams.20.041301
    [41]
    Y. Gao, J. Bin, D. Haffa, C. Kreuzer, J. Hartmann et al., “An automated, 0.5 Hz nano-foil target positioning system for intense laser plasma experiments,” High Power Laser Sci. Eng. 5, e12 (2017).10.1017/hpl.2017.10
    [42]
    S. Raschke, S. Spickermann, T. Toncian, M. Swantusch, J. Boeker et al., “Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams,” Sci. Rep. 6, 32441 (2016).10.1038/srep32441
    [43]
    [44]
    J. Ehlert, M. Piel, F. Boege, M. Cerchez, R. Haas et al., “An experimental platform for studying the radiation effects of laser accelerated protons on mammalian cells,” AIP Adv. 11, 065208 (2021).10.1063/5.0031299
    [45]
    N. P. Dover, M. Nishiuchi, H. Sakaki, K. Kondo, H. F. Lowe et al., “Demonstration of repetitive energetic proton generation by ultra-intense laser interaction with a tape target,” High Energy Density Phys. 37, 100847 (2020).10.1016/j.hedp.2020.100847
    [46]
    S. Steinke, J. H. Bin, J. Park, Q. Ji, K. Nakamura et al., “Acceleration of high charge ion beams with achromatic divergence by petawatt laser pulses,” Phys. Rev. Accel. Beams 23, 021302 (2020).10.1103/PhysRevAccelBeams.23.021302
    [47]
    F. P. Condamine, N. Jourdain, J.-C. Hernandez, M. Taylor, H. Bohlin et al., “High-repetition rate solid target delivery system for PW-class laser–matter interaction at ELI Beamlines,” Rev. Sci. Instrum. 90, 063504 (2021).10.1063/5.0053281
    [48]
    N. Xu, M. J. V. Streeter, O. C. Ettlinger, H. Ahmed, S. Astbury et al., “Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration,” High Power Laser Sci. Eng. 11, e23 (2023).10.1017/hpl.2023.27
    [49]
    J. Luis Henares, M. Ehret, J. Imanol Apiñaniz, C. Salgado, J. Antonio Pérez-Hernández et al., “Online target normal sheath acceleration proton beam stabilization at 1 Hz in ultra-intense laser–matter interaction,” High Power Laser Sci. Eng. 12, e94 (2024).10.1017/hpl.2024.79
    [50]
    J. T. Morrison, S. Feister, K. D. Frische, D. R. Austin, G. K. Ngirmang et al., “MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction,” New J. Phys. 20, 022001 (2018).10.1088/1367-2630/aaa8d1
    [51]
    P. Hilz, T. M. Ostermayr, A. Huebl, V. Bagnoud, B. Borm et al., “Isolated proton bunch acceleration by a petawatt laser pulse,” Nat. Commun. 9, 423 (2018).10.1038/s41467-017-02663-1
    [52]
    P. Puyuelo-Valdes, D. de Luis, J. Hernandez, J. I. Apiñaniz, A. Curcio et al., “Implementation of a thin, flat water target capable of high-repetition-rate MeV-range proton acceleration in a high-power laser at the CLPU,” Plasma Phys. Controlled Fusion 64, 054003 (2022).10.1088/1361-6587/ac5643
    [53]
    S. Garcia, D. Chatain, and J. P. Perin, “Continuous production of a thin ribbon of solid hydrogen,” Laser Part. Beams 32(4), 569–575 (2014).10.1017/S0263034614000524
    [54]
    M. Rehwald, S. Assenbaum, C. Bernert, F.-E. Brack, M. Bussmann et al., “Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density,” Nat. Commun. 14, 4009 (2023).10.1038/s41467-023-39739-0
    [55]
    P. McKenna, D. Neely, R. Bingham, and D. Jaroszynski, Laser-Plasma Interactions and Applications, Scottish Graduate Series (Springer Publishing International, 2013).
    [56]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/PhysRevLett.85.2945
    [57]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh et al., “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542 (2001).10.1063/1.1333697
    [58]
    T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).10.1103/PhysRevLett.92.175003
    [59]
    K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou et al., “Laser-triggered ion acceleration and table top isotope production,” Appl. Phys. Lett. 78(5), 595–597 (2001).10.1063/1.1343845
    [60]
    K. W. D. Ledingham, P. McKenna, T. McCanny, S. Shimizu, J. M. Yang et al., “High power laser production of short-lived isotopes for positron emission tomography,” J. Phys. D: Appl. Phys. 37, 2341 (2004).10.1088/0022-3727/37/16/019
    [61]
    M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor et al., “Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions,” Appl. Phys. Lett. 78(1), 19–21 (2001).10.1063/1.1335849
    [62]
    F. E. Merrill, A. A. Golubev, F. G. Mariam, V. I. Turtikov, D. Varentsov et al., “Proton microscopy at FAIR,” AIP Conf. Proc. 1195(1), 667–670 (2009).10.1063/1.3295228
    [63]
    F. Mirani, A. Maffini, F. Casamichiela, A. Pazzaglia, A. Formenti et al., “Integrated quantitative PIXE analysis and EDX spectroscopy using a laser-driven particle source,” Sci. Adv. 7, 3 (2021).10.1126/sciadv.abc8660
    [64]
    M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86(3), 436–439 (2001).10.1103/PhysRevLett.86.436
    [65]
    W. McKenzie, D. Batani, T. A. Mehlhorn, D. Margarone, F. Belloni et al., “HB11—Understanding hydrogen-boron fusion as a new clean energy source,” J. Fusion Energy 42, 17 (2023).10.1007/s10894-023-00349-9
    [66]
    F. Consoli, V. T. Tikhonchuk, M. Bardon, P. Bradford, D. C. Carroll et al., “Laser produced electromagnetic pulses: Generation, detection and mitigation,” High Power Laser Sci. Eng. 8, e22 (2020).10.1017/hpl.2020.13
    [67]
    A. Poyé, S. Hulin, J. Ribolzi, M. Bailly-Grandvaux, F. Lubrano-Lavaderci et al., “Thin target charging in short laser pulse interactions,” Phys. Rev. E 98, 033201 (2018).10.1103/PhysRevE.98.033201
    [68]
    I.-M. Vladisavlevici, D. Vizman, and E. d’Humières, “Theoretical investigation of the interaction of ultra-high intensity laser pulses with near critical density plasmas,” Plasma Phys. Controlled Fusion 65(4), 045012 (2013).10.1088/1361-6587/acbe63
    [69]
    M. Ehret, M. Bailly-Grandvaux, P. Korneev, J. I. Apiñaniz, C. Brabetz et al., “Guided electromagnetic discharge pulses driven by short intense laser pulses: Characterization and modeling,” Phys. Plasmas 30, 013105 (2023).10.1063/5.0124011
    [70]
    P. W. Bradford, V. Ospina-Bohorquez, M. Ehret, J.-L. Henares, P. Puyuelo-Valdes et al., “Laser interactions with gas jets: EMP emission and nozzle damage,” High Power Laser Sci. Eng. 12, e98 (2024).10.1017/hpl.2024.73
    [71]
    M. Bardon, J. G. Moreau, L. Romagnani, C. Rousseaux, M. Ferri et al., “Physics of chromatic focusing, post-acceleration and bunching of laser-driven proton beams in helical coil targets,” Plasma Phys. Controlled Fusion 62, 125019 (2020).10.1088/1361-6587/abbe35
    [72]
    E. Ioniţă, A. Marcu, M. Temelie, D. Savu, M. Şerbănescu et al., “Radiofrequency EMF irradiation effects on pre-B lymphocytes undergoing somatic recombination,” Sci. Rep. 11, 12651 (2021).10.1038/s41598-021-91790-3
    [73]
    K. Nelissen, M. Liszi, M. D. Marco, V. Ospina, I. Drotár et al., “Characterisation and modelling of ultrashort laser-driven electromagnetic pulses,” Sci. Rep. 10, 3108 (2020).10.1038/s41598-020-59882-8
    [74]
    M. Ehret, L. Volpe, J. I. Apiñaniz, M. D. Rodríguez-Frías, and G. Gatti, “Influence of the experimental setup on electromagnetic pulses in the VHF band at relativistic high-power laser facilities,” Photonics 11(5), 459 (2024).10.3390/photonics11050459
    [75]
    A. Marcu, M. Stafe, A. Groza, M. Serbanescu, R. Ungureanu et al., “Correlation of laser-accelerated electron energy with electromagnetic pulse emission from thin metallic targets,” Appl. Sci. 15, 29 (2024).10.3390/app15010029
    [76]
    J. S. Pearlman and G. H. Dahlbacka, “Charge separation and target voltages in laser-produced plasmas,” Appl. Phys. Lett. 31, 414–417 (1977).10.1063/1.89729
    [77]
    C. Courtois, A. Compant La Fontaine, O. Landoas, G. Lidove, V. Méot et al., “Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses,” Phys. Plasmas 16, 013105 (2009).10.1063/1.3067825
    [78]
    M. Ehret, D. de Luis, J. I. Apiñaniz, J. L. Henares, R. Lera et al., “Stability and debris-mitigation of a solid tape target delivery system for intense laser-matter interactions towards high-repetition-rate,” Plasma Phys. Controlled Fusion 66, 045003 (2024).10.1088/1361-6587/ad2690
    [79]
    J. Cikhardt, J. Krása, M. De Marco, M. Pfeifer, A. Velyhan et al., “Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS,” Rev. Sci. Instrum. 85, 103507 (2014).10.1063/1.4898016
    [80]
    [81]
    C. Salgado-López, J. I. Apiñaniz, A. Curcio, D. de Luis, J. L. Henares et al., “Angular-resolved Thomson parabola spectrometer for laser-driven ion acceleration,” Sensors 22(9), 3239 (2022).10.3390/s22093239
    [82]
    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: Pulse compression and shaping,” Opt. Lett. 25, 572 (2000).10.1364/ol.25.000575
    [83]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69(9), 1383–1386 (1992).10.1103/PhysRevLett.69.1383
    [84]
    G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77(1), 75–78 (1996).10.1103/PhysRevLett.77.75
    [85]
    F. M. Charbonnier, C. J. Bennette, and L. W. Swanson, “Electrical breakdown between metal electrodes in high vacuum. I. Theory,” J. Appl. Phys. 38, 627–633 (1967).10.1063/1.1709385
    [86]
    E. A. Vishnyakov, A. Sagisaka, K. Ogura, T. Z. Esirkepov, B. Gonzalez-Izquierdo et al., “Metrology for sub-Rayleigh-length target positioning in ∼1022 W/cm2 laser–plasma experiments,” High Power Laser Sci. Eng. 12, e32 (2024).10.1017/hpl.2024.11
    [87]
    S. Saghafi, M. J. Withford, and Z. Ghoranneviss, “Characterizing flat-top laser beams using standard beam parameters,” Can. J. Phys. 84, 223 (2006).10.1139/p06-012
    [88]
    A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter et al., “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E 81, 036405 (2010).10.1103/PhysRevE.81.036405
    [89]
    A. J. Mackinnon, Y. Sentoku, P. K. Patel, D. W. Price, S. Hatchett et al., “Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses,” Phys. Rev. Lett. 88(21), 215006 (2002).10.1103/PhysRevLett.88.215006
    [90]
    I.-M. Vladisavlevici, M. Ehret, E. Filippov, E. García-García, C. Mendez et al., “Theoretical study of the pre-plasma density scale length’s influence on the absorption efficiency in laser–solid interaction at relativistic laser intensities for PW-class lasers,” Photonics 12(1), 71 (2025).10.3390/photonics12010071
    [91]
    T. Ziegler, D. Albach, C. Bernert, S. Bock, F.-E. Brack et al., “Proton beam quality enhancement by spectral phase control of a PW-class laser system,” Sci. Rep. 11, 7338 (2021).10.1038/s41598-021-86547-x
    [92]
    A. Permogorov, G. Cantono, D. Guenot, A. Persson, and C.-G. Wahlström, “Effects of pulse chirp on laser-driven proton acceleration,” Sci. Rep. 12, 3031 (2022).10.1038/s41598-022-07019-4
    [93]
    J. S. Green, D. C. Carroll, C. Brenner, B. Dromey, P. S. Foster et al., “Enhanced proton flux in the MeV range by defocused laser irradiation,” New J. Phys. 12, 085012 (2010).10.1088/1367-2630/12/8/085012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return