Citation: | Zhou Yazhou, Guo Jing, Cai Shu, Sun Hualei, Li Chengyu, Zhao Jinyu, Wang Pengyu, Han Jinyu, Chen Xintian, Chen Yongjin, Wu Qi, Ding Yang, Xiang Tao, Mao Ho-kwang, Sun Liling. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7[J]. Matter and Radiation at Extremes, 2025, 10(2): 027801. doi: 10.1063/5.0247684 |
[1] |
V. I. Anisimov, D. Bukhvalov, and T. M. Rice, “Electronic structure of possible nickelate analogs to the cuprates,” Phys. Rev. B 59, 7901–7906 (1999).10.1103/physrevb.59.7901
|
[2] |
M. A. Hayward, “Topochemical reactions of layered transition-metal oxides,” Semicond. Sci. Technol. 29, 064010 (2014).10.1088/0268-1242/29/6/064010
|
[3] |
D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley et al., “Superconductivity in an infinite-layer nickelate,” Nature 572, 624–627 (2019).10.1038/s41586-019-1496-5
|
[4] |
N. N. Wang, M. W. Yang, Z. Yang, K. Y. Chen, H. Zhang et al., “Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films,” Nat. Commun. 13, 4367 (2022).10.1038/s41467-022-32065-x
|
[5] |
G. A. Pan, D. Ferenc Segedin, H. LaBollita, Q. Song, E. M. Nica et al., “Superconductivity in a quintuple-layer square-planar nickelate,” Nat. Mater. 21, 160–164 (2022).10.1038/s41563-021-01142-9
|
[6] |
K. Lee, B. Y. Wang, M. Osada, B. H. Goodge, T. C. Wang et al., “Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2,” Nature 619, 288–292 (2023).10.1038/s41586-023-06129-x
|
[7] |
H. Sun, M. Huo, X. Hu, J. Li, Z. Liu et al., “Signatures of superconductivity near 80 K in a nickelate under high pressure,” Nature 621, 493–498 (2023).10.1038/s41586-023-06408-7
|
[8] |
J. Hou, P.-T. Yang, Z.-Y. Liu, J.-Y. Li, P.-F. Shan et al., “Emergence of high-temperature superconducting phase in pressurized La3Ni2O7 crystals,” Chin. Phys. Lett. 40, 117302 (2023).10.1088/0256-307x/40/11/117302
|
[9] |
Y. Zhang, D. Su, Y. Huang, Z. Shan, H. Sun et al., “High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7−δ,” Nat. Phys. 20, 1269–1273 (2024).10.1038/s41567-024-02515-y
|
[10] |
G. Wang, N. N. Wang, X. L. Shen, J. Hou, L. Ma et al., “Pressure-induced superconductivity in polycrystalline La3Ni2O7−δ,” Phys. Rev. X 14, 011040 (2024).10.1103/physrevx.14.011040
|
[11] |
M. Zhang, C. Pei, Q. Wang, Y. Zhao, C. Li et al., “Effects of pressure and doping on Ruddlesden-Popper phases Lan+1NinO3n+1,” J. Mater. Sci. Technol. 185, 147–154 (2024).10.1016/j.jmst.2023.11.011
|
[12] |
X. Chen, J. Zhang, A. S. Thind, S. Sharma, H. LaBollita et al., “Polymorphism in the Ruddlesden-Popper nickelate La3Ni2O7: Discovery of a hidden phase with distinctive layer stacking,” J. Am. Chem. Soc. 146, 3640–3645 (2024).10.1021/jacs.3c14052
|
[13] |
Z. Liu, M. Huo, J. Li, Q. Li, Y. Liu et al., “Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7,” Nat. Commun. 15, 7570 (2024).10.1038/s41467-024-52001-5
|
[14] |
Z. Dong, M. Huo, J. Li, J. Li, P. Li et al., “Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ,” Nature 630, 847–852 (2024).10.1038/s41586-024-07482-1
|
[15] |
N. Wang, G. Wang, X. Shen, J. Hou, J. Luo et al., “Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7,” Nature 634, 579–584 (2024).10.1038/s41586-024-07996-8
|
[16] |
F. Li, N. Guo, Q. Zheng, Y. Shen, S. Wang et al., “Design and synthesis of three-dimensional hybrid Ruddlesden-Popper nickelate single crystals,” Phys. Rev. Mater. 8, 053401 (2024).10.1103/physrevmaterials.8.053401
|
[17] |
R. Gao, L. Jin, S. Huyan, D. Ni, H. Wang et al., “Is La3Ni2O6.5 a bulk superconducting nickelate?,” ACS Appl. Mater. Interfaces 16, 66857 (2024).10.1021/acsami.3c17376
|
[18] |
K. Jiao, R. Niu, H. Xu, W. Zhen, J. Wang, and C. Zhang, “Enhanced conductivity in Sr doped La3Ni2O7-δ with high-pressure oxygen annealing,” Physica C 621, 1354504 (2024).10.1016/j.physc.2024.1354504
|
[19] |
L. Wang, Y. Li, S.-Y. Xie, F. Liu, H. Sun et al., “Structure responsible for the superconducting state in La3Ni2O7 at high-pressure and low-temperature conditions,” J. Am. Chem. Soc. 146, 7506–7514 (2024).10.1021/jacs.3c13094
|
[20] |
K. Chen, X. Liu, J. Jiao, M. Zou, C. Jiang et al., “Evidence of spin density waves in La3Ni2O7-δ,” Phys. Rev. Lett. 132, 256503 (2024).10.1103/physrevlett.132.256503
|
[21] | |
[22] |
P. Puphal, P. Reiss, N. Enderlein, Y.-M. Wu, G. Khaliullin et al., “Unconventional crystal structure of the high-pressure superconductor La3Ni2O7,” Phys. Rev. Lett. 133, 146002 (2024).10.1103/physrevlett.133.146002
|
[23] | |
[24] | |
[25] |
H. Wang, L. Chen, A. Rutherford, H. Zhou, and W. Xie, “Long-range structural order in a Hidden phase of Ruddlesden–Popper bilayer nickelate La3Ni2O7,” Inorg. Chem. 63, 5020–5026 (2024).10.1021/acs.inorgchem.3c04474
|
[26] | |
[27] |
M. Wang, H.-H. Wen, T. Wu, D.-X. Yao, and T. Xiang, “Normal and superconducting properties of La3Ni2O7,” Chin. Phys. Lett. 41, 077402 (2024).10.1088/0256-307x/41/7/077402
|
[28] |
Y. Zhang, L.-F. Lin, A. Moreo, T. A. Maier, and E. Dagotto, “Trends in electronic structures and s±-wave pairing for the rare-earth series in bilayer nickelate superconductor R3Ni2O7,” Phys. Rev. B 108, 165141 (2023).10.1103/physrevb.108.165141
|
[29] |
Y. Zhang, L.-F. Lin, A. Moreo, and E. Dagotto, “Electronic structure, dimer physics, orbital-selective behavior, and magnetic tendencies in the bilayer nickelate superconductor La3Ni2O7 under pressure,” Phys. Rev. B 108, L180510 (2023).10.1103/physrevb.108.l180510
|
[30] | |
[31] | |
[32] |
Q.-G. Yang, D. Wang, and Q.-H. Wang, “Possible s±-wave superconductivity in La3Ni2O7,” Phys. Rev. B 108, L140505 (2023).10.1103/physrevb.108.l140505
|
[33] |
D. A. Shilenko and I. V. Leonov, “Correlated electronic structure, orbital-selective behavior, and magnetic correlations in double-layer La3Ni2O7 under pressure,” Phys. Rev. B 108, 125105 (2023).10.1103/physrevb.108.125105
|
[34] |
Y. Shen, M. Qin, and G. M. Zhang, “Effective bi-layer model Hamiltonian and density-matrix renormalization group study for the high-Tc superconductivity in La3Ni2O7 under high pressure,” Chin. Phys. Lett. 40, 127401 (2023).10.1088/0256-307x/40/12/127401
|
[35] |
Q. Qin and Y. Yang, “High-Tc superconductivity by mobilizing local spin singlets and possible route to higher Tc in pressurized La3Ni2O7,” Phys. Rev. B 108, L140504 (2023).10.1103/physrevb.108.l140504
|
[36] |
Z. Luo, X. Hu, M. Wang, W. Wú, and D.-X. Yao, “Bilayer two-orbital model of La3Ni2O7 under pressure,” Phys. Rev. Lett. 131, 126001 (2023).10.1103/physrevlett.131.126001
|
[37] | |
[38] |
Y.-B. Liu, J.-W. Mei, F. Ye, W.-Q. Chen, and F. Yang, “s±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure,” Phys. Rev. Lett. 131, 236002 (2023).10.1103/physrevlett.131.236002
|
[39] |
Z. Liao, L. Chen, G. Duan, Y. Wang, C. Liu et al., “Electron correlations and superconductivity in La3Ni2O7 under pressure tuning,” Phys. Rev. B 108, 214522 (2023).10.1103/physrevb.108.214522
|
[40] |
F. Lechermann, J. Gondolf, S. Bötzel, and I. M. Eremin, “Electronic correlations and superconducting instability in La3Ni2O7 under high pressure,” Phys. Rev. B 108, L201121 (2023).10.1103/physrevb.108.l201121
|
[41] | |
[42] | |
[43] |
V. Christiansson, F. Petocchi, and P. Werner, “Correlated electronic structure of La3Ni2O7 under pressure,” Phys. Rev. Lett. 131, 206501 (2023).10.1103/physrevlett.131.206501
|
[44] | |
[45] |
Y. Zhang, L.-F. Lin, A. Moreo, T. A. Maier, and E. Dagotto, “Structural phase transition, s±-wave pairing, and magnetic stripe order in bilayered superconductor La3Ni2O7 under pressure,” Nat. Commun. 15, 2470 (2024).10.1038/s41467-024-46622-z
|
[46] |
H. Sakakibara, N. Kitamine, M. Ochi, and K. Kuroki, “Possible high Tc superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model,” Phys. Rev. Lett. 132, 106002 (2024).10.1103/physrevlett.132.106002
|
[47] |
X.-Z. Qu, D.-W. Qu, J. Chen, C. Wu, F. Yang et al., “Bilayer model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7,” Phys. Rev. Lett. 132, 036502 (2024).10.1103/PhysRevLett.132.036502
|
[48] |
C. Lu, Z. Pan, F. Yang, and C. Wu, “Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure,” Phys. Rev. Lett. 132, 146002 (2024).10.1103/physrevlett.132.146002
|
[49] |
R. Jiang, J. Hou, Z. Fan, Z.-J. Lang, and W. Ku, “Pressure driven fractionalization of ionic spins results in cupratelike high-Tc superconductivity in La3Ni2O7,” Phys. Rev. Lett. 132, 126503 (2024).10.1103/physrevlett.132.126503
|
[50] |
K. Jiang, Z. Wang, and F.-C. Zhang, “High-temperature superconductivity in La3Ni2O7,” Chin. Phys. Lett. 41, 017402 (2024).10.1088/0256-307X/41/1/017402
|
[51] | |
[52] |
J. Yang, H. Sun, X. Hu, Y. Xie, T. Miao et al., “Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7,” Nat. Commun. 15, 4373 (2024).10.1038/s41467-024-48701-7
|
[53] |
F. C. Zhang and T. M. Rice, “Effective Hamiltonian for the superconducting Cu oxides,” Phys. Rev. B 37, 3759–3761 (1988).10.1103/physrevb.37.3759
|
[54] |
M. Ishizuka, M. Iketani, and S. Endo, “Pressure effect on superconductivity of vanadium at megabar pressures,” Phys. Rev. B 61, R3823–R3825 (2000).10.1103/physrevb.61.r3823
|
[55] |
Y. A. Timofeev, V. V. Struzhkin, R. J. Hemley, H. Mao, and E. A. Gregoryanz, “Improved techniques for measurement of superconductivity in diamond anvil cells by magnetic susceptibility,” Rev. Sci. Instrum. 73, 371–377 (2002).10.1063/1.1431257
|
[56] |
Y. A. Timofeev and A. N. Utyuzh, “Detection of superconductivity in a high-pressure chamber with diamond anvils by mutual induction method with laser-modulated sample temperature,” Instrum. Exp. Tech. 48, 550–555 (2005).10.1007/s10786-005-0098-7
|
[57] |
P. Mohn, Magnetism in the Solid State: An Introduction, 2nd ed. (Springer, Berlin, NY, 2006).
|
[58] |
S. W. Hsu, S. Y. Tsaur, and H. C. Ku, “Effect of oxygen on the filamentary superconductivity of the La2−xCuO4−δ system,” Phys. Rev. B 38, 856–858 (1988).10.1103/physrevb.38.856
|
[59] |
S. R. Saha, N. P. Butch, K. Kirshenbaum, J. Paglione, and P. Y. Zavalij, “Superconducting and ferromagnetic phases induced by lattice distortions in stoichiometric SrFe2As2 single crystals,” Phys. Rev. Lett. 103, 037005 (2009).10.1103/PhysRevLett.103.037005
|
[60] |
H. Xiao, T. Hu, S. K. He, B. Shen, W. J. Zhang et al., “Filamentary superconductivity across the phase diagram of Ba(Fe,Co)2As2,” Phys. Rev. B 86, 064521 (2012).10.1103/physrevb.86.064521
|
[61] |
K. Gofryk, M. Pan, C. Cantoni, B. Saparov, J. E. Mitchell et al., “Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2,” Phys. Rev. Lett. 112, 047005 (2014).10.1103/PhysRevLett.112.047005
|
[62] |
J. G. Bednorz and K. A. Müller, “Possible high Tc superconductivity in the Ba–La–Cu–O system,” Z. Phys. B 64, 189–193 (1986).10.1007/BF01303701
|
[63] |
M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng et al., “Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure,” Phys. Rev. Lett. 58, 908–910 (1987).10.1103/physrevlett.58.908
|
[64] |
J.-C. Grenier, N. Lagueyte, A. Wattiaux, J.-P. Doumerc, P. Dordor et al., “Transport and magnetic properties of the superconducting La2CuO4+δ phases (0 < δ < 0.09) prepared by electrochemical oxidation,” Physica C 202, 209–218 (1992).10.1016/0921-4534(92)90163-7
|
[65] |
J.-C. Grenier, A. Wattiaux, A. Demourgues, M. Pouchard, and P. Hagenmuller, “Electrochemical oxidation: A new way for preparing high oxidation states of transition metals,” Solid State Ionics 63–65, 825–832 (1993).10.1016/0167-2738(93)90203-f
|
[66] |
A. Demourgues, F. Weill, B. Darriet, A. Wattiaux, J. C. Grenier et al., “Additional oxygen ordering in ‘La2NiO4.25’ (La8Ni4O17),” J. Solid State Chem. 106, 330–338 (1993).10.1006/jssc.1993.1293
|
[67] |
M. D. Carvalho, A. Wattiaux, J. M. Bassat, J. C. Grenier, M. Pouchard et al., “Electrochemical oxidation and reduction of La4Ni3O10 in alkaline media,” J. Solid State Electrochem. 7, 700–705 (2003).10.1007/s10008-003-0381-0
|
[68] |
F. Ran, Y. Liang, and J. D. Zhang, “Quasi-two-dimensional superconductivity at oxide heterostructures,” Acta Phys. Sin. 72, 097401 (2023).10.7498/aps.72.20230044
|