Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
Zhou Yazhou, Guo Jing, Cai Shu, Sun Hualei, Li Chengyu, Zhao Jinyu, Wang Pengyu, Han Jinyu, Chen Xintian, Chen Yongjin, Wu Qi, Ding Yang, Xiang Tao, Mao Ho-kwang, Sun Liling. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7[J]. Matter and Radiation at Extremes, 2025, 10(2): 027801. doi: 10.1063/5.0247684
Citation: Zhou Yazhou, Guo Jing, Cai Shu, Sun Hualei, Li Chengyu, Zhao Jinyu, Wang Pengyu, Han Jinyu, Chen Xintian, Chen Yongjin, Wu Qi, Ding Yang, Xiang Tao, Mao Ho-kwang, Sun Liling. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7[J]. Matter and Radiation at Extremes, 2025, 10(2): 027801. doi: 10.1063/5.0247684

Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7

doi: 10.1063/5.0247684
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: maohk@hpstar.ac.cn and llsun@iphy.ac.cn or liling.sun@hpstar.ac.cn
  • Received Date: 2024-11-08
  • Accepted Date: 2024-12-30
  • Available Online: 2025-03-01
  • Publish Date: 2025-03-01
  • Signatures of superconductivity near 80 K have recently been discovered in single crystals of La3Ni2O7 under pressure, which makes it a new candidate for high-temperature superconductors dominated by 3d transition elements, following the cuprate and iron-pnictide superconductors. However, there are several critical questions that have been perplexing the scientific community: (1) What factors contribute to the inconsistent reproducibility of the experimental results? (2) What is the fundamental nature of pressure-induced superconductivity: bulk or nonbulk (filamentary-like)? (3) Where is the superconducting phase located within the sample if it is filamentary-like? (4) Is the oxygen content important for the development and stabilization of superconductivity? In this study, we employ comprehensive high-pressure techniques to address these questions. Through our modulated ac susceptibility measurements, we are the first to find that the superconductivity in this nickelate is filamentary-like. Our scanning transmission electron microscopy investigations suggest that the filamentary-like superconductivity most likely emerges at the interface between La3Ni2O7 and La4Ni3O10 phases. By tuning the oxygen content of polycrystalline La3Ni2O7, we also find that it plays vital role in the development and stabilization of superconductivity in this material. The upper and lower bounds on the oxygen content are 7.35 and 6.89, respectively. Our results provide not only new insights into the puzzling issues regarding this material, but also significant information that will enable a better understanding of its superconductivity.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Y.Z., J.G., S.C., and H.S. contributed equally to this work.
    Yazhou Zhou: Investigation (equal); Writing – review & editing (equal). Jing Guo: Investigation (equal); Writing – review & editing (equal). Shu Cai: Investigation (equal); Writing – review & editing (equal). Hualei Sun: Investigation (equal); Writing – review & editing (equal). Chengyu Li: Investigation (equal). Jinyu Zhao: Investigation (equal). Pengyu Wang: Investigation (equal). Jinyu Han: Investigation (equal). Xintian Chen: Investigation (equal). Yongjin Chen: Investigation (equal); Writing – review & editing (equal). Qi Wu: Investigation (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Yang Ding: Investigation (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Tao Xiang: Investigation (equal); Supervision (equal); Writing – review & editing (equal). Ho-kwang Mao: Investigation (equal); Supervision (equal); Writing – review & editing (equal). Liling Sun: Investigation (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal).
    L.S., H.-K.M., T.X., and Q.W. designed the study and supervised the project. H.L.S. provided the La3Ni2O7 single crystals. Z.Y.Z. synthesized the La3Ni2O7−δ and La3Ni2O7+δ polycrystalline samples. Z.Y.Z. and S.C. performed the high-pressure modulated ac susceptibility measurements. J.G., S.C., P.Y.W., J.Y.Z., and J.Y.H. performed the high-pressure resistance and Hall coefficient measurements. Z.Y.Z. performed the experiments on electrochemical reactions. S.C. conducted the single-crystal X-ray diffraction measurements for the ambient-pressure sample. C.Y.L. and Y.J.C. performed the STEM investigations. L.S., T.X., Q.W., Y.D., H.-K.M., Y.Z. Z., J. G., and S.C. analyzed the data. L.S., H.-K.M., T.X., Q.W., Y.Z.Y., and J.G. wrote the manuscript, with efforts from all the authors.
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    V. I. Anisimov, D. Bukhvalov, and T. M. Rice, “Electronic structure of possible nickelate analogs to the cuprates,” Phys. Rev. B 59, 7901–7906 (1999).10.1103/physrevb.59.7901
    [2]
    M. A. Hayward, “Topochemical reactions of layered transition-metal oxides,” Semicond. Sci. Technol. 29, 064010 (2014).10.1088/0268-1242/29/6/064010
    [3]
    D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley et al., “Superconductivity in an infinite-layer nickelate,” Nature 572, 624–627 (2019).10.1038/s41586-019-1496-5
    [4]
    N. N. Wang, M. W. Yang, Z. Yang, K. Y. Chen, H. Zhang et al., “Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films,” Nat. Commun. 13, 4367 (2022).10.1038/s41467-022-32065-x
    [5]
    G. A. Pan, D. Ferenc Segedin, H. LaBollita, Q. Song, E. M. Nica et al., “Superconductivity in a quintuple-layer square-planar nickelate,” Nat. Mater. 21, 160–164 (2022).10.1038/s41563-021-01142-9
    [6]
    K. Lee, B. Y. Wang, M. Osada, B. H. Goodge, T. C. Wang et al., “Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2,” Nature 619, 288–292 (2023).10.1038/s41586-023-06129-x
    [7]
    H. Sun, M. Huo, X. Hu, J. Li, Z. Liu et al., “Signatures of superconductivity near 80 K in a nickelate under high pressure,” Nature 621, 493–498 (2023).10.1038/s41586-023-06408-7
    [8]
    J. Hou, P.-T. Yang, Z.-Y. Liu, J.-Y. Li, P.-F. Shan et al., “Emergence of high-temperature superconducting phase in pressurized La3Ni2O7 crystals,” Chin. Phys. Lett. 40, 117302 (2023).10.1088/0256-307x/40/11/117302
    [9]
    Y. Zhang, D. Su, Y. Huang, Z. Shan, H. Sun et al., “High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7−δ,” Nat. Phys. 20, 1269–1273 (2024).10.1038/s41567-024-02515-y
    [10]
    G. Wang, N. N. Wang, X. L. Shen, J. Hou, L. Ma et al., “Pressure-induced superconductivity in polycrystalline La3Ni2O7−δ,” Phys. Rev. X 14, 011040 (2024).10.1103/physrevx.14.011040
    [11]
    M. Zhang, C. Pei, Q. Wang, Y. Zhao, C. Li et al., “Effects of pressure and doping on Ruddlesden-Popper phases Lan+1NinO3n+1,” J. Mater. Sci. Technol. 185, 147–154 (2024).10.1016/j.jmst.2023.11.011
    [12]
    X. Chen, J. Zhang, A. S. Thind, S. Sharma, H. LaBollita et al., “Polymorphism in the Ruddlesden-Popper nickelate La3Ni2O7: Discovery of a hidden phase with distinctive layer stacking,” J. Am. Chem. Soc. 146, 3640–3645 (2024).10.1021/jacs.3c14052
    [13]
    Z. Liu, M. Huo, J. Li, Q. Li, Y. Liu et al., “Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7,” Nat. Commun. 15, 7570 (2024).10.1038/s41467-024-52001-5
    [14]
    Z. Dong, M. Huo, J. Li, J. Li, P. Li et al., “Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ,” Nature 630, 847–852 (2024).10.1038/s41586-024-07482-1
    [15]
    N. Wang, G. Wang, X. Shen, J. Hou, J. Luo et al., “Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7,” Nature 634, 579–584 (2024).10.1038/s41586-024-07996-8
    [16]
    F. Li, N. Guo, Q. Zheng, Y. Shen, S. Wang et al., “Design and synthesis of three-dimensional hybrid Ruddlesden-Popper nickelate single crystals,” Phys. Rev. Mater. 8, 053401 (2024).10.1103/physrevmaterials.8.053401
    [17]
    R. Gao, L. Jin, S. Huyan, D. Ni, H. Wang et al., “Is La3Ni2O6.5 a bulk superconducting nickelate?,” ACS Appl. Mater. Interfaces 16, 66857 (2024).10.1021/acsami.3c17376
    [18]
    K. Jiao, R. Niu, H. Xu, W. Zhen, J. Wang, and C. Zhang, “Enhanced conductivity in Sr doped La3Ni2O7-δ with high-pressure oxygen annealing,” Physica C 621, 1354504 (2024).10.1016/j.physc.2024.1354504
    [19]
    L. Wang, Y. Li, S.-Y. Xie, F. Liu, H. Sun et al., “Structure responsible for the superconducting state in La3Ni2O7 at high-pressure and low-temperature conditions,” J. Am. Chem. Soc. 146, 7506–7514 (2024).10.1021/jacs.3c13094
    [20]
    K. Chen, X. Liu, J. Jiao, M. Zou, C. Jiang et al., “Evidence of spin density waves in La3Ni2O7-δ,” Phys. Rev. Lett. 132, 256503 (2024).10.1103/physrevlett.132.256503
    [21]
    [22]
    P. Puphal, P. Reiss, N. Enderlein, Y.-M. Wu, G. Khaliullin et al., “Unconventional crystal structure of the high-pressure superconductor La3Ni2O7,” Phys. Rev. Lett. 133, 146002 (2024).10.1103/physrevlett.133.146002
    [23]
    [24]
    [25]
    H. Wang, L. Chen, A. Rutherford, H. Zhou, and W. Xie, “Long-range structural order in a Hidden phase of Ruddlesden–Popper bilayer nickelate La3Ni2O7,” Inorg. Chem. 63, 5020–5026 (2024).10.1021/acs.inorgchem.3c04474
    [26]
    [27]
    M. Wang, H.-H. Wen, T. Wu, D.-X. Yao, and T. Xiang, “Normal and superconducting properties of La3Ni2O7,” Chin. Phys. Lett. 41, 077402 (2024).10.1088/0256-307x/41/7/077402
    [28]
    Y. Zhang, L.-F. Lin, A. Moreo, T. A. Maier, and E. Dagotto, “Trends in electronic structures and s±-wave pairing for the rare-earth series in bilayer nickelate superconductor R3Ni2O7,” Phys. Rev. B 108, 165141 (2023).10.1103/physrevb.108.165141
    [29]
    Y. Zhang, L.-F. Lin, A. Moreo, and E. Dagotto, “Electronic structure, dimer physics, orbital-selective behavior, and magnetic tendencies in the bilayer nickelate superconductor La3Ni2O7 under pressure,” Phys. Rev. B 108, L180510 (2023).10.1103/physrevb.108.l180510
    [30]
    [31]
    [32]
    Q.-G. Yang, D. Wang, and Q.-H. Wang, “Possible s±-wave superconductivity in La3Ni2O7,” Phys. Rev. B 108, L140505 (2023).10.1103/physrevb.108.l140505
    [33]
    D. A. Shilenko and I. V. Leonov, “Correlated electronic structure, orbital-selective behavior, and magnetic correlations in double-layer La3Ni2O7 under pressure,” Phys. Rev. B 108, 125105 (2023).10.1103/physrevb.108.125105
    [34]
    Y. Shen, M. Qin, and G. M. Zhang, “Effective bi-layer model Hamiltonian and density-matrix renormalization group study for the high-Tc superconductivity in La3Ni2O7 under high pressure,” Chin. Phys. Lett. 40, 127401 (2023).10.1088/0256-307x/40/12/127401
    [35]
    Q. Qin and Y. Yang, “High-Tc superconductivity by mobilizing local spin singlets and possible route to higher Tc in pressurized La3Ni2O7,” Phys. Rev. B 108, L140504 (2023).10.1103/physrevb.108.l140504
    [36]
    Z. Luo, X. Hu, M. Wang, W. Wú, and D.-X. Yao, “Bilayer two-orbital model of La3Ni2O7 under pressure,” Phys. Rev. Lett. 131, 126001 (2023).10.1103/physrevlett.131.126001
    [37]
    [38]
    Y.-B. Liu, J.-W. Mei, F. Ye, W.-Q. Chen, and F. Yang, “s±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure,” Phys. Rev. Lett. 131, 236002 (2023).10.1103/physrevlett.131.236002
    [39]
    Z. Liao, L. Chen, G. Duan, Y. Wang, C. Liu et al., “Electron correlations and superconductivity in La3Ni2O7 under pressure tuning,” Phys. Rev. B 108, 214522 (2023).10.1103/physrevb.108.214522
    [40]
    F. Lechermann, J. Gondolf, S. Bötzel, and I. M. Eremin, “Electronic correlations and superconducting instability in La3Ni2O7 under high pressure,” Phys. Rev. B 108, L201121 (2023).10.1103/physrevb.108.l201121
    [41]
    [42]
    [43]
    V. Christiansson, F. Petocchi, and P. Werner, “Correlated electronic structure of La3Ni2O7 under pressure,” Phys. Rev. Lett. 131, 206501 (2023).10.1103/physrevlett.131.206501
    [44]
    [45]
    Y. Zhang, L.-F. Lin, A. Moreo, T. A. Maier, and E. Dagotto, “Structural phase transition, s±-wave pairing, and magnetic stripe order in bilayered superconductor La3Ni2O7 under pressure,” Nat. Commun. 15, 2470 (2024).10.1038/s41467-024-46622-z
    [46]
    H. Sakakibara, N. Kitamine, M. Ochi, and K. Kuroki, “Possible high Tc superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model,” Phys. Rev. Lett. 132, 106002 (2024).10.1103/physrevlett.132.106002
    [47]
    X.-Z. Qu, D.-W. Qu, J. Chen, C. Wu, F. Yang et al., “Bilayer model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7,” Phys. Rev. Lett. 132, 036502 (2024).10.1103/PhysRevLett.132.036502
    [48]
    C. Lu, Z. Pan, F. Yang, and C. Wu, “Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure,” Phys. Rev. Lett. 132, 146002 (2024).10.1103/physrevlett.132.146002
    [49]
    R. Jiang, J. Hou, Z. Fan, Z.-J. Lang, and W. Ku, “Pressure driven fractionalization of ionic spins results in cupratelike high-Tc superconductivity in La3Ni2O7,” Phys. Rev. Lett. 132, 126503 (2024).10.1103/physrevlett.132.126503
    [50]
    K. Jiang, Z. Wang, and F.-C. Zhang, “High-temperature superconductivity in La3Ni2O7,” Chin. Phys. Lett. 41, 017402 (2024).10.1088/0256-307X/41/1/017402
    [51]
    [52]
    J. Yang, H. Sun, X. Hu, Y. Xie, T. Miao et al., “Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7,” Nat. Commun. 15, 4373 (2024).10.1038/s41467-024-48701-7
    [53]
    F. C. Zhang and T. M. Rice, “Effective Hamiltonian for the superconducting Cu oxides,” Phys. Rev. B 37, 3759–3761 (1988).10.1103/physrevb.37.3759
    [54]
    M. Ishizuka, M. Iketani, and S. Endo, “Pressure effect on superconductivity of vanadium at megabar pressures,” Phys. Rev. B 61, R3823–R3825 (2000).10.1103/physrevb.61.r3823
    [55]
    Y. A. Timofeev, V. V. Struzhkin, R. J. Hemley, H. Mao, and E. A. Gregoryanz, “Improved techniques for measurement of superconductivity in diamond anvil cells by magnetic susceptibility,” Rev. Sci. Instrum. 73, 371–377 (2002).10.1063/1.1431257
    [56]
    Y. A. Timofeev and A. N. Utyuzh, “Detection of superconductivity in a high-pressure chamber with diamond anvils by mutual induction method with laser-modulated sample temperature,” Instrum. Exp. Tech. 48, 550–555 (2005).10.1007/s10786-005-0098-7
    [57]
    P. Mohn, Magnetism in the Solid State: An Introduction, 2nd ed. (Springer, Berlin, NY, 2006).
    [58]
    S. W. Hsu, S. Y. Tsaur, and H. C. Ku, “Effect of oxygen on the filamentary superconductivity of the La2−xCuO4−δ system,” Phys. Rev. B 38, 856–858 (1988).10.1103/physrevb.38.856
    [59]
    S. R. Saha, N. P. Butch, K. Kirshenbaum, J. Paglione, and P. Y. Zavalij, “Superconducting and ferromagnetic phases induced by lattice distortions in stoichiometric SrFe2As2 single crystals,” Phys. Rev. Lett. 103, 037005 (2009).10.1103/PhysRevLett.103.037005
    [60]
    H. Xiao, T. Hu, S. K. He, B. Shen, W. J. Zhang et al., “Filamentary superconductivity across the phase diagram of Ba(Fe,Co)2As2,” Phys. Rev. B 86, 064521 (2012).10.1103/physrevb.86.064521
    [61]
    K. Gofryk, M. Pan, C. Cantoni, B. Saparov, J. E. Mitchell et al., “Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2,” Phys. Rev. Lett. 112, 047005 (2014).10.1103/PhysRevLett.112.047005
    [62]
    J. G. Bednorz and K. A. Müller, “Possible high Tc superconductivity in the Ba–La–Cu–O system,” Z. Phys. B 64, 189–193 (1986).10.1007/BF01303701
    [63]
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng et al., “Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure,” Phys. Rev. Lett. 58, 908–910 (1987).10.1103/physrevlett.58.908
    [64]
    J.-C. Grenier, N. Lagueyte, A. Wattiaux, J.-P. Doumerc, P. Dordor et al., “Transport and magnetic properties of the superconducting La2CuO4+δ phases (0 < δ < 0.09) prepared by electrochemical oxidation,” Physica C 202, 209–218 (1992).10.1016/0921-4534(92)90163-7
    [65]
    J.-C. Grenier, A. Wattiaux, A. Demourgues, M. Pouchard, and P. Hagenmuller, “Electrochemical oxidation: A new way for preparing high oxidation states of transition metals,” Solid State Ionics 63–65, 825–832 (1993).10.1016/0167-2738(93)90203-f
    [66]
    A. Demourgues, F. Weill, B. Darriet, A. Wattiaux, J. C. Grenier et al., “Additional oxygen ordering in ‘La2NiO4.25’ (La8Ni4O17),” J. Solid State Chem. 106, 330–338 (1993).10.1006/jssc.1993.1293
    [67]
    M. D. Carvalho, A. Wattiaux, J. M. Bassat, J. C. Grenier, M. Pouchard et al., “Electrochemical oxidation and reduction of La4Ni3O10 in alkaline media,” J. Solid State Electrochem. 7, 700–705 (2003).10.1007/s10008-003-0381-0
    [68]
    F. Ran, Y. Liang, and J. D. Zhang, “Quasi-two-dimensional superconductivity at oxide heterostructures,” Acta Phys. Sin. 72, 097401 (2023).10.7498/aps.72.20230044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (11) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return