| Citation: | Renner O., Klimo O., Krus M., Nicolaï Ph., Poletaeva A., Bukharskii N., Tikhonchuk V. T.. Hot-electron generation in high-intensity laser–matter experiments with copper targets[J]. Matter and Radiation at Extremes, 2025, 10(3): 037403. doi: 10.1063/5.0246250 |
| [1] |
R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald et al., “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
|
| [2] |
S. Atzeni, X. Ribeyre, G. Schurtz, A. j. Schmitt, B. Canaud et al., “Shock ignition of thermonuclear fuel: Principles and modelling,” Nucl. Fusion 54, 054008 (2014).10.1088/0029-5515/54/5/054008
|
| [3] |
D. Batani, S. Baton, A. Casner, S. Depierreux, M. Hohenberger et al., “Physics issues for shock ignition,” Nucl. Fusion 54, 054009 (2014).10.1088/0029-5515/54/5/054009
|
| [4] |
W. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley-CRC Press, Redwood, CA, 1988).
|
| [5] |
V. Tikhonchuk, Particle Kinetics and Laser Plasma Interactions (Cambridge Scholar Publishing, 2024).
|
| [6] |
O. Klimo, S. Weber, V. T. Tikhonchuk, and J. Limpouch, “Particle-in-cell simulations of laser–plasma interaction for the shock ignition scenario,” Plasma Phys. Control. Fusion 52, 055013 (2010).10.1088/0741-3335/52/5/055013
|
| [7] |
S. Zhang, C. M. Krauland, J. Peebles, J. Li, F. N. Beg et al., “Experimental study of hot electron generation in shock ignition relevant high-intensity regime with large scale hot plasmas,” Phys. Plasmas 27, 023111 (2020).10.1063/1.5119250
|
| [8] |
K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa et al., “The Prague asterix laser system,” Phys. Plasmas 8, 2495 (2001).10.1063/1.1350569
|
| [9] |
G. Cristoforetti, L. Antonelli, D. Mancelli, S. Atzeni, F. Baffigi et al., “Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma,” High Power Laser Sci. Eng. 7, e51 (2019).10.1017/hpl.2019.37
|
| [10] |
T. Pisarczyk, M. Kalal, S. Y. Gus’kov, D. Batani, O. Renner et al., “Hot electron retention in laser plasma created under terawatt subnanosecond irradiation of Cu targets,” Phys. Plasma Control. Fusion 62, 115020 (2020).10.1088/1361-6587/abb74b
|
| [11] |
E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, A. S. Martynenko et al., “Characterization of hot electrons generated by laser–plasma interaction at shock ignition intensities,” Matter Radiat. Extremes 8, 065602 (2023).10.1063/5.0157168
|
| [12] |
G. Cristoforetti, F. Baffigi, D. Batani, R. Dudzak, R. Fedosejevs et al., “Investigation on the origin of hot electrons in laser plasma interaction at shock ignition intensities,” Sci. Rep. 13, 20681 (2023).10.1038/s41598-023-46189-7
|
| [13] |
Y. J. Gu, O. Klimo, P. Nicolaï, S. Shekhanov, S. Weber et al., “Collective absorption of laser radiation in plasma at sub-relativistic intensities,” High Power Laser Sci. Eng. 7, e39 (2019).10.1017/hpl.2019.25
|
| [14] |
W. Theobald, R. Nora, W. Seka, M. Lafon, K. S. Anderson et al., “Spherical strong-shock generation for shock-ignition inertial fusion,” Phys. Plasmas 22, 056310 (2015).10.1063/1.4920956
|
| [15] |
W. Theobald, A. Bose, R. Yan, R. Betti, M. Lafon et al., “Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition,” Phys. Plasmas 24, 120702 (2017).10.1063/1.4986797
|
| [16] |
M. Šmíd, O. Renner, A. Colaïtis, V. T. Tikhonchuk, T. Schlegel et al., “Characterization of suprathermal electrons inside a laser-accelerated plasma via highly-resolved Kα-emission,” Nat. Commun. 10, 4212 (2019).10.1038/s41467-019-12008-9
|
| [17] |
O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extremes 4, 024201 (2019).10.1063/1.5086344
|
| [18] |
H. Sawada, T. Daykin, H. S. McLean, H. Chen, P. K. Patel et al., “Two-color monochromatic x-ray imaging with a single short-pulse laser,” Rev. Sci. Instrum. 88, 063502 (2017).10.1063/1.4985729
|
| [19] |
O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Control. Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
|
| [20] | |
| [21] |
S. G. Podorov, O. Renner, O. Wehrhan, and E. Förster, “Optimized polychromatic x-ray imaging with asymmetrically cut bent crystals,” J. Phys. D: Appl. Phys. 34, 2363 (2001).10.1088/0022-3727/34/15/317
|
| [22] |
V. Horný and O. Klimo, “Hot electron refluxing in the short intense laser pulse interactions with solid targets and its influence on K-α radiation,” Nukleonika 60, 233 (2015).10.1515/nuka-2015-0045
|
| [23] |
J. C. Zhao, L. H. Cao, J. H. Zheng, Z. Q. Zhao, Z. J. Liu et al., “The model of the influence of the electron refluxing on the electron transport and Kα emission,” Laser Part. Beams 35, 483 (2017).10.1017/s0263034617000465
|
| [24] |
L. G. Huang, M. Molodtsova, A. Ferrari, A. L. Garcia, T. Toncian et al., “Dynamics of hot refluxing electrons in ultra-short relativistic laser foil interactions,” Phys. Plasmas 29, 023102 (2022).10.1063/5.0077222
|
| [25] |
P. Neumayer, B. Aurand, M. Basko, B. Ecker, P. Gibbon et al., “The role of hot electron refluxing in laser-generated K-alpha sources,” Phys. Plasmas 17, 103103 (2010).10.1063/1.3486520
|
| [26] |
S. Singh, M. Krupka, V. Istokskaia, J. Krasa, L. Giuffrida et al., “Hot electron and x-ray generation by sub-ns kJ-class laser-produced tantalum plasma,” Plasma Phys. Control. Fusion 64, 105012 (2022).10.1088/1361-6587/ac8bf3
|
| [27] |
S. Y. Gus’kov, P. A. Kuchugov, R. A. Yakhin, and N. V. Zmitrenko, “Effect of ‘wandering’ and other features of energy transfer by fast electrons in a direct-drive inertial confinement fusion target,” Plasma Phys. Control. Fusion 61, 055003 (2019).10.1088/1361-6587/ab0641
|
| [28] |
J. Breil, S. Galera, and P.-H. Maire, “Multi-material ALE computation in inertial confinement fusion code CHIC,” Comput. Fluids 46, 161 (2011).10.1016/j.compfluid.2010.06.017
|
| [29] |
T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Control. Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
|
| [30] |
J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello et al., “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351 (2018).10.1016/j.cpc.2017.09.024
|
| [31] |
S. D. Baton, E. Le Bel, S. Brygoo, X. Ribeyre, C. Rousseaux et al., “Shock generation comparison with planar and hemispherical targets in shock ignition relevant experiment,” Phys. Plasmas 24, 092708 (2017).10.1063/1.4989525
|
| [32] |
E. Llor Aisa, X. Ribeyre, G. Duchateau, T. Nguyen-Bui, V. T. Tikhonchuk et al., “The role of hot electrons in the dynamics of a laser-driven strong converging shock,” Phys. Plasmas 24, 112711 (2017).10.1063/1.5003814
|
| [33] |
L. Antonelli, J. Trela, F. Barbato, G. Boutoux, P. Nicolaï et al., “Laser-driven strong shocks with infrared lasers at intensity of 1016 W/cm2,” Phys. Plasmas 26, 112708 (2019).10.1063/1.5119697
|
| [34] |
A. Colaïtis, G. Duchateau, X. Ribeyre, Y. Maheut, G. Boutoux et al., “Coupled hydrodynamic model for laser-plasma interaction and hot electron generation,” Phys. Rev. E 92, 041101 (2015).10.1103/physreve.92.041101
|
| [35] |
A. Colaïtis, X. Ribeyre, E. Le Bel, G. Duchateau, P. Nicolaï et al., “Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions,” Phys. Plasmas 23, 072703 (2016).10.1063/1.4958808
|
| [36] |
S. Y. Gus’kov, “Amplification of separated electric charge field due to the capture of laser-produced fast electrons oscillating near thin target,” Phys. Plasmas 27, 122109 (2020).10.1063/5.0023753
|
| [37] |
K. Kanaya and S. Okayama, “Penetration and energy-loss theory of electrons in solid targets,” J. Phys. D: Appl. Phys. 5, 43 (1972).10.1088/0022-3727/5/1/308
|
| [38] |
M. Passoni, V. T. Tikhonchuk, M. Lontano, and V. Y. Bychenkov, “Charge separation effects in solid targets and ion acceleration with a two-temperature electron distribution,” Phys. Rev. E 69, 026411 (2004).10.1103/physreve.69.026411
|