Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 3
May  2025
Turn off MathJax
Article Contents
Kim Chul Min, Kim Sang Pyo. 3+1 formulation of light modes in nonlinear electrodynamics[J]. Matter and Radiation at Extremes, 2025, 10(3): 037201. doi: 10.1063/5.0240870
Citation: Kim Chul Min, Kim Sang Pyo. 3+1 formulation of light modes in nonlinear electrodynamics[J]. Matter and Radiation at Extremes, 2025, 10(3): 037201. doi: 10.1063/5.0240870

3+1 formulation of light modes in nonlinear electrodynamics

doi: 10.1063/5.0240870
More Information
  • Author Bio:

    Author to whom correspondence should be addressed: sangkim@kunsan.ac.kr

  • Corresponding author: a)Electronic mail: chulmin@gist.ac.kr
  • Received Date: 2024-09-27
  • Accepted Date: 2025-03-03
  • Available Online: 2025-11-28
  • Publish Date: 2025-05-01
  • We present a 3+1 formulation of the light modes in nonlinear electrodynamics described by Plebanski-type Lagrangians, which include post-Maxwellian, Born–Infeld, ModMax, and Heisenberg–Euler–Schwinger QED Lagrangians. In nonlinear electrodynamics, strong electromagnetic fields modify the vacuum such that it acquires optical properties. Such a field-modified vacuum can possess electric permittivity, magnetic permeability, and a magneto-electric response, inducing novel phenomena such as vacuum birefringence. By exploiting the mathematical structures of Plebanski-type Lagrangians, we establish a streamlined procedure and explicit formulas to determine light modes, i.e., refractive indices and polarization vectors for a given propagation direction. We also work out the light modes of the various Lagrangians for an arbitrarily strong magnetic field. The 3+1 formulation advanced in this paper has direct applications to the current vacuum birefringence research: terrestrial experiments using permanent magnets/ultra-intense lasers for the subcritical regime and astrophysical observation of X-rays from highly magnetized neutron stars for the near-critical and supercritical regimes.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Chul Min Kim: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Software (equal); Supervision (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Sang Pyo Kim: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Software (equal); Supervision (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    P. Jordan, J. Ehlers, and R. K. Sachs, “Republication of: Contributions to the theory of pure gravitational radiation. Exact solutions of the field equations of the general theory of relativity II,” Gen. Relativ. Gravit. 45, 2691–2753 (2013).10.1007/s10714-013-1590-1
    [2]
    K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay et al., “First M87 event horizon telescope results. IV. Imaging the central supermassive black hole,” Astrophys. J., Lett. 875, L4 (2019).10.3847/2041-8213/ab0e85
    [3]
    K. Akiyama, K. Akiyama, A. Alberdi, W. Alef, J. C. Algaba et al., “First Sagittarius a* event horizon telescope results. VII. Polarization of the ring,” Astrophys. J., Lett. 964, L25 (2024).10.3847/2041-8213/ad2df0
    [4]
    S. Vagnozzi, R. Roy, Y.-D. Tsai, L. Visinelli, M. Afrin et al., “Horizon-scale tests of gravity theories and fundamental physics from the event horizon telescope image of Sagittarius A*,” Classical Quant. Grav. 40, 165007 (2023).10.1088/1361-6382/acd97b
    [5]
    M. Born and L. Infeld, “Foundations of the new field theory,” Proc. R. Soc. London, Ser. A 144, 425–451 (1934).10.1098/rspa.1934.0059
    [6]
    G. W. Gibbons and C. A. R. Herdeiro, “Born-infeld theory and stringy causality,” Phys. Rev. D 63, 064006 (2001).10.1103/physrevd.63.064006
    [7]
    W. Heisenberg and H. Euler, “Folgerungen aus der diracschen theorie des positrons,” Z. Phys. 98, 714 (1936).10.1007/bf01343663
    [8]
    J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664–679 (1951).10.1103/physrev.82.664
    [9]
    W. Dittrich and M. Reuter, Effective Lagrangians in Quantum Electrodynamics (Springer, 1985), pp. 1–241.
    [10]
    E. S. Fradkin, D. M. Gitman, and S. M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer, 1991), pp. 1–250.
    [11]
    F. Sauter, “Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs,” Z. Phys. 69, 742–764 (1931).10.1007/bf01339461
    [12]
    S. P. Kim, H. K. Lee, and Y. Yoon, “Effective action of QED in electric field backgrounds,” Phys. Rev. D 78, 105013 (2008).10.1103/physrevd.78.105013
    [13]
    S. P. Kim, H. K. Lee, and Y. Yoon, “Effective action of QED in electric field backgrounds. II. Spatially localized fields,” Phys. Rev. D 82, 025015 (2010).10.1103/physrevd.82.025015
    [14]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).10.1016/0030-4018(85)90151-8
    [15]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [16]
    V. M. Kaspi and A. M. Beloborodov, “Magnetars,” Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).10.1146/annurev-astro-081915-023329
    [17]
    N. A. Spaldin and M. Fiebig, “The renaissance of magnetoelectric multiferroics,” Science 309, 391–392 (2005).10.1126/science.1113357
    [18]
    W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials,” Nature 442, 759–765 (2006).10.1038/nature05023
    [19]
    N. A. Spaldin and R. Ramesh, “Advances in magnetoelectric multiferroics,” Nat. Mater. 18, 203–212 (2019).10.1038/s41563-018-0275-2
    [20]
    Z. Bialynicka-Birula and I. Bialynicki-Birula, “Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field,” Phys. Rev. D 2, 2341–2345 (1970).10.1103/physrevd.2.2341
    [21]
    S. L. Adler, “Photon splitting and photon dispersion in a strong magnetic field,” Ann. Phys. 67, 599–647 (1971).10.1016/0003-4916(71)90154-0
    [22]
    J. Plebański, Lectures on Non-linear Electrodynamics (Nordita, 1970), pp. 1–147.
    [23]
    W. Dittrich and H. Gies, “Light propagation in nontrivial QED vacua,” Phys. Rev. D 58, 025004 (1998).10.1103/physrevd.58.025004
    [24]
    V. D. Lorenci, R. Klippert, M. Novello, and J. Salim, “Light propagation in non-linear electrodynamics,” Phys. Lett. B 482, 134–140 (2000).10.1016/S0370-2693(00)00522-0
    [25]
    F. Karbstein and R. Shaisultanov, “Photon propagation in slowly varying inhomogeneous electromagnetic fields,” Phys. Rev. D 91, 085027 (2015).10.1103/physrevd.91.085027
    [26]
    Y. N. Obukhov and G. F. Rubilar, “Fresnel analysis of wave propagation in nonlinear electrodynamics,” Phys. Rev. D 66, 024042 (2002).10.1103/physrevd.66.024042
    [27]
    G. F. Rubilar, “Linear pre-metric electrodynamics and deduction of the light cone,” Ann. Phys. 514, 717–782 (2002).10.1002/andp.200251410-1102
    [28]
    W.-T. Ni, H.-H. Mei, and S.-J. Wu, “Foundations of classical electrodynamics, equivalence principle and cosmic interactions: A short exposition and an update,” Mod. Phys. Lett. A 28, 1340013 (2013).10.1142/s0217732313400130
    [29]
    C. M. Kim and S. P. Kim, “Magnetars as laboratories for strong field QED,” AIP Conf. Proc. 2874, 020013 (2024).10.1063/5.0215939
    [30]
    C. M. Kim and S. P. Kim, “Vacuum birefringence at one-loop in a supercritical magnetic field superposed with a weak electric field and application to pulsar magnetosphere,” Eur. Phys. J. C 83, 104 (2023).10.1140/epjc/s10052-023-11243-1
    [31]
    J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999) pp. 555–556.
    [32]
    S. S. Komissarov, “Electrodynamics of black hole magnetospheres,” Mon. Not. Roy. Astron. Soc. 350, 427–448 (2004).10.1111/j.1365-2966.2004.07598.x
    [33]
    A. Kandus, K. E. Kunze, and C. G. Tsagas, “Primordial magnetogenesis,” Phys. Rep. 505, 1–58 (2011).10.1016/j.physrep.2011.03.001
    [34]
    S. E. Gralla and T. Jacobson, “Spacetime approach to force-free magnetospheres,” Mon. Not. Roy. Astron. Soc. 445, 2500–2534 (2014).10.1093/mnras/stu1690
    [35]
    L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Elsevier, 1984), pp. 1–480.
    [36]
    The probe light’s frequency ω is assumed to be much smaller than the medium’s characteristic frequency. For the QED vacuum, the characteristic frequency is associated with the electron’s rest mass energy m ≃ 0.5 MeV.
    [37]
    J. Mckenna and P. M. Platzman, “Nonlinear interaction of light in a vacuum,” Phys. Rev. 129, 2354–2360 (1963).10.1103/physrev.129.2354
    [38]
    M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor et al., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999) pp. 790–795.
    [39]
    D. B. Melrose and R. C. McPhedran, Electromagnetic Processes in Dispersive Media (Cambridge University Press, 1991), pp. 68–71.
    [40]
    The cross product of two vectors can be rewritten as a matrix–vector product. For n = (n1, n2, n3), we construct an associated matrix ñ with ñij=ϵijknk. Then, the following identities hold: n×A=ñA, (n×A)B=(ñA)B, and (AB)ñ=A(ñB).
    [41]
    M. Fiebig, “Revival of the magnetoelectric effect,” J. Phys. D Appl. Phys. 38, R123–R152 (2005).10.1088/0022-3727/38/8/r01
    [42]
    R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge University Press, 2013).
    [43]
    J. S. Heyl and L. Hernquist, “Birefringence and dichroism of the qed vacuum,” J. Phys. A: Math. Gen. 30, 6485–6492 (1997).10.1088/0305-4470/30/18/022
    [44]
    F. Karbstein, “Probing vacuum polarization effects with high-intensity lasers,” Particles 3, 39–61 (2020).10.3390/particles3010005
    [45]
    V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, 2nd ed. (Butterworth-Heinemann, 1982), Vol. 4, pp. 573–585.
    [46]
    S. Robertson, “Optical Kerr effect in vacuum,” Phys. Rev. A. 100, 063831 (2019).10.1103/physreva.100.063831
    [47]
    J. W. Gibbs and E. B. Wilson, Vector Analysis: A Text-Book for the Use of Students of Mathematics and Physics (Yale University Press, 1913), pp. 295–297.
    [48]
    For a direction vector n̂ and an arbitrary vector A, we use the following notation: AnAn̂, AcA×n̂, At(n̂×A)×n̂, A2A · A, and At2A2An2.
    [49]
    V. A. De Lorenci, R. Klippert, S.-Y. Li, and J. P. Pereira, “Multirefringence phenomena in nonlinear electrodynamics,” Phys. Rev. D 88, 065015 (2013).10.1103/physrevd.88.065015
    [50]
    T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, 2010), pp. 46–86.
    [51]
    I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “Nonlinear duality-invariant conformal extension of Maxwell’s equations,” Phys. Rev. D 102, 121703 (2020).10.1103/physrevd.102.121703
    [52]
    D. P. Sorokin, “Introductory notes on non-linear electrodynamics and its applications,” Fortschr. Phys. 70, 2200092 (2022).10.1002/prop.202200092
    [53]
    W. Dittrich, “One-loop effective potentials in quantum electrodynamics,” J. Phys. A: Math. Gen. 9, 1171–1179 (1976).10.1088/0305-4470/9/7/019
    [54]
    K. A. Bronnikov, “Regular black holes sourced by nonlinear electrodynamics,” in Regular Black Holes: Towards a New Paradigm of Gravitational Collapse, edited by C. Bambi (Springer, 2023), pp. 37–67.
    [55]
    J. Maldacena, “Comments on magnetic black holes,” J. High Energy Phys. 2021, 79.10.1007/jhep04(2021)079
    [56]
    V. F. Weisskopf, “Ueber die elektrodynamik des vakuums auf grund des quanten-theorie des elektrons,” Dan. Mat. Fys. Medd. 14, 1–39 (1936).
    [57]
    B. King and T. Heinzl, “Measuring vacuum polarization with high-power lasers,” High Power Laser Sci. Eng. 4, e5 (2016).10.1017/hpl.2016.1
    [58]
    Q. Yu, D. Xu, B. Shen, T. E. Cowan, and H.-P. Schlenvoigt, “X-ray polarimetry and its application to strong-field quantum electrodynamics,” High Power Laser Sci. Eng. 11, e71 (2023).10.1017/hpl.2023.45
    [59]
    S. P. Kim and H. K. Lee, “Quantum electrodynamics actions in supercritical fields,” J. Korean Phys. Soc. 74, 930–934 (2019).10.3938/jkps.74.930
    [60]
    J. S. Heyl and L. Hernquist, “Analytic form for the effective Lagrangian of QED and its application to pair production and photon splitting,” Phys. Rev. D 55, 2449–2454 (1997).10.1103/physrevd.55.2449
    [61]
    D. B. Melrose, Quantum Plasmadynamics: Magnetized Plasmas (Springer, 2013), pp. 372–378.
    [62]
    V. I. Denisov, E. E. Dolgaya, and V. A. Sokolov, “Nonperturbative QED vacuum birefringence,” J. High Energy Phys. 2017, 105.10.1007/jhep05(2017)105
    [63]
    A. Ejlli, F. Della Valle, U. Gastaldi, G. Messineo, R. Pengo et al., “The PVLAS experiment: A 25 year effort to measure vacuum magnetic birefringence,” Phys. Rep. 871, 1–74 (2020).10.1016/j.physrep.2020.06.001
    [64]
    F. Karbstein, C. Sundqvist, K. S. Schulze, I. Uschmann, H. Gies et al., “Vacuum birefringence at X-ray free-electron lasers,” New J. Phys. 23, 095001 (2021).10.1088/1367-2630/ac1df4
    [65]
    R. Taverna et al., “Polarized X-rays from a magnetar,” Science 378, 646–650 (2022).10.1126/science.add0080
    [66]
    A. Santangelo, S. Zane, H. Feng, R. Xu, V. Doroshenko et al., “Physics and astrophysics of strong magnetic field systems with eXTP,” Sci. China: Phys., Mech. Astron. 62, 29505 (2019).10.1007/s11433-018-9234-3
    [67]
    Z. Wadiasingh, G. Younes, M. G. Baring, A. K. Harding, P. L. Gonthier et al., “Magnetars as astrophysical laboratories of extreme quantum electrodynamics: The case for a compton telescope,” Bull. Am. Astron. Soc. 51, 292 (2019).
    [68]
    S. A. Olausen and V. M. Kaspi, “The McGill magnetar catalog,” ApJS 212, 6 (2014).10.1088/0067-0049/212/1/6
    [69]
    I. Caiazzo, D. González-Caniulef, J. Heyl, and R. Fernández, “Probing magnetar emission mechanisms with X-ray spectropolarimetry,” Mon. Not. R. Astron. Soc. 514, 5024–5034 (2022).10.1093/mnras/stac1571
    [70]
    C. Wang and D. Lai, “Wave modes in the magnetospheres of pulsars and magnetars,” Mon. Not. Roy. Astron. Soc. 377, 1095–1112 (2007).10.1111/j.1365-2966.2007.11531.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (13) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return