Citation: | Wu Xianye, Pei Xiaoyang, Chen Xiang, Zhang Hao, Wang Jin, Yang Xin, Xiang Meizhen, Gao Shang, Wang Fang. Formation mechanism of multiple spallation and its penetration induced by shear localization in NiTi alloy under implosion loading[J]. Matter and Radiation at Extremes, 2025, 10(1): 017802. doi: 10.1063/5.0235705 |
[1] |
W. H. Li, S. Chen, Z. Aitken, and Y. W. Zhang, “Shock-induced deformation and spallation in CoCrFeMnNi high-entropy alloys at high strain-rates,” Int. J. Plast. 168, 103691 (2023).10.1016/j.ijplas.2023.103691
|
[2] |
A. R. Vishnu, G. Vadillo, and J. A. Rodríguez-Martínez, “Void growth in ductile materials with realistic porous microstructures,” Int. J. Plast. 167, 103655 (2023).10.1016/j.ijplas.2023.103655
|
[3] |
X. Tian, J. Z. Cui, K. P. Ma, and M. Z. Xiang, “Shock-induced plasticity and damage in single-crystalline Cu at elevated temperatures by molecular dynamics simulations,” Int. J. Heat Mass Transfer 158, 120013 (2020).10.1016/j.ijheatmasstransfer.2020.120013
|
[4] |
M. Z. Xiang, S. Q. Jiang, J. Z. Cui, Y. Xu, and J. Chen, “Coupling of dynamic ductile damage and melting in shock-induced micro-spalling: Modeling and applications,” Int. J. Plast. 136, 102849 (2021).10.1016/j.ijplas.2020.102849
|
[5] |
C. Lv, G. J. Wang, X. P. Zhang, B. Q. Luo, N. Luo et al., “Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures,” Mech. Mater. 161, 104004 (2021).10.1016/j.mechmat.2021.104004
|
[6] |
T. de Rességuier, S. Hemery, E. Lescoute, P. Villechaise, G. I. Kanel, and S. V. Razorenov, “Spall fracture and twinning in laser shock-loaded single-crystal magnesium,” J. Appl. Phys. 121, 165104 (2017).10.1063/1.4982352
|
[7] |
W. H. Li, X. H. Yao, P. S. Branicio, X. Q. Zhang, and N. B. Zhang, “Shock-induced spall in single and nanocrystalline SiC,” Acta Mater. 140, 274–289 (2017).10.1016/j.actamat.2017.08.036
|
[8] |
J. L. Shao, C. Wang, P. Wang, A. M. He, and F. G. Zhang, “Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock,” Mech. Mater. 131, 78–83 (2019).10.1016/j.mechmat.2019.01.012
|
[9] |
A. V. Dobromyslov, N. I. Taluts, E. A. Kozlov, A. V. Petrovtsev, A. T. Sapozhnikov, and D. T. Yusupov, “Deformation behavior of copper under conditions of loading by spherically converging shock waves: High-intensity regime of loading,” Phys. Met. Metallogr. 116, 97–108 (2015).10.1134/s0031918x15010044
|
[10] |
M. T. Liu, G. W. Ren, C. Fan, T. G. Tang, X. Y. Wang, and H. Hu, “Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder,” Int. J. Impact Eng. 109, 240–252 (2017).10.1016/j.ijimpeng.2017.07.008
|
[11] |
Q. Xue, M. A. Meyers, and V. F. Nesterenko, “Self organization of shear bands in stainless steel,” Mater. Sci. Eng.: A 384, 35–46 (2004).10.1016/j.msea.2004.05.069
|
[12] |
I. G. Shirinkina, D. Y. Rasposienko, I. G. Brodova, A. B. Smirnov, and A. V. Koval, “The influence of heat treatment and loading conditions on the structure of an Al–Zn–Mg–Cu shell,” Phys. Met. Metallogr. 123, 808–815 (2022).10.1134/s0031918x22080105
|
[13] |
H. Zhang, H. Peng, X. Y. Pei, J. Y. Wu, P. Li et al., “Phase-field modeling of coupled spall and adiabatic shear banding and simulation of complex cracks in ductile metals,” J. Mech. Phys. Solids 172, 105186 (2023).10.1016/j.jmps.2022.105186
|
[14] |
A. R. Vishnu, M. Marvi-Mashhadi, J. C. Nieto-Fuentes, and J. A. Rodríguez-Martínez, “New insights into the role of porous microstructure on dynamic shear localization,” Int. J. Plast. 148, 103150 (2022).10.1016/j.ijplas.2021.103150
|
[15] |
G. Agarwal, R. R. Valisetty, and A. M. Dongare, “Shock wave compression behavior and dislocation density evolution in Al microstructures at the atomic scales and the mesoscales,” Int. J. Plast. 128, 102678 (2020).10.1016/j.ijplas.2020.102678
|
[16] |
P. Li, Y. F. Huang, K. Wang, S. F. Xiao, L. Wang et al., “Crystallographic-orientation-dependence plasticity of niobium under shock compressions,” Int. J. Plast. 150, 103195 (2022).10.1016/j.ijplas.2021.103195
|
[17] |
V. V. Pogorelko and A. E. Mayer, “Dynamic tensile fracture of iron: Molecular dynamics simulations and micromechanical model based on dislocation plasticity,” Int. J. Plast. 167, 103678 (2023).10.1016/j.ijplas.2023.103678
|
[18] |
Y. Chen, Z. Y. Jian, S. F. Xiao, L. Wang, X. F. Li et al., “Molecular dynamics simulation of shock wave propagation and spall failure in single crystal copper under cylindrical impact,” Appl. Phys. Express 14, 075504 (2021).10.35848/1882-0786/ac06de
|
[19] |
J. Y. Tan, Z. Y. Jian, S. F. Xiao, X. F. Li, K. Wang et al., “The mechanism of plasticity and phase transition in iron single crystals under cylindrically divergent shock loading,” Int. J. Mech. Sci. 217, 107032 (2022).10.1016/j.ijmecsci.2021.107032
|
[20] |
E. N. Hahn and M. A. Meyers, “Grain-size dependent mechanical behavior of nanocrystalline metals,” Mater. Sci. Eng.: A 646, 101–134 (2015).10.1016/j.msea.2015.07.075
|
[21] |
R. B. Figueiredo, M. Kawasaki, and T. G. Langdon, “Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress,” Prog. Mater. Sci. 137, 101131 (2023).10.1016/j.pmatsci.2023.101131
|
[22] |
Z. C. Cordero, B. E. Knight, and C. A. Schuh, “Six decades of the Hall-Petch effect—A survey of grain-size strengthening studies on pure metals,” Int. Mater. Rev. 61, 495–512 (2016).10.1080/09506608.2016.1191808
|
[23] |
R. M. Flanagan, S. J. Fensin, and M. A. Meyers, “The role of pre-existing heterogeneities in materials under shock and spall,” Appl. Phys. Rev. 9, 011305 (2022).10.1063/5.0053693
|
[24] |
Y. L. Zhu, S. Qian, L. F. Qiu, X. Y. Yang, Y. Yang et al., “Synergy of spall strength and toughness in nanograined metals,” Nano Lett. 24, 4217–4223 (2024).10.1021/acs.nanolett.4c00292
|
[25] |
Q. S. Huang, W. Yang, and H. F. Zhou, “Migration of grain boundary triple junctions in nanocrystalline metals initiated by accumulated dislocations,” Int. J. Plast. 173, 103872 (2024).10.1016/j.ijplas.2023.103872
|
[26] |
C. A. Bronkhorst, H. Cho, P. W. Marcy, S. A. Vander Wiel, S. Gupta et al., “Local micro-mechanical stress conditions leading to pore nucleation during dynamic loading,” Int. J. Plast. 137, 102903 (2021).10.1016/j.ijplas.2020.102903
|
[27] |
S. J. Fensin, J. P. Escobedo-Diaz, C. Brandl, E. K. Cerreta, G. T. Gray et al., “Effect of loading direction on grain boundary failure under shock loading,” Acta Mater. 64, 113–122 (2014).10.1016/j.actamat.2013.11.026
|
[28] |
R. W. Minich, J. U. Cazamias, M. Kumar, and A. J. Schwartz, “Effect of microstructural length scales on spall behavior of copper,” Metall. Mater. Trans. A 35, 2663–2673 (2004).10.1007/s11661-004-0212-7
|
[29] |
S. Saedi, E. Acar, H. Raji, S. E. Saghaian, and M. Mirsayar, “Energy damping in shape memory alloys: A review,” J. Alloys Compd. 956, 170286 (2023).10.1016/j.jallcom.2023.170286
|
[30] |
A. Amadi, M. Mohyaldinn, S. Ridha, and V. Ola, “Advancing engineering frontiers with NiTi shape memory alloys: A multifaceted review of properties, fabrication, and application potentials,” J. Alloys Compd. 976, 173227 (2024).10.1016/j.jallcom.2023.173227
|
[31] |
S. Nemat-Nasser, J. Y. Choi, W. G. Guo, and J. B. Isaacs, “Very high strain-rate response of a NiTi shape-memory alloy,” Mech. Mater. 37, 287–298 (2005).10.1016/j.mechmat.2004.03.007
|
[32] |
X. P. Zhang, G. J. Wang, B. Q. Luo, S. N. Bland, F. L. Tan et al., “Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate,” J. Alloys Compd. 731, 569–576 (2018).10.1016/j.jallcom.2017.10.080
|
[33] |
G. T. Li, T. Y. Yu, N. Zhang, and M. J. Chen, “The effect of Ni content on phase transformation behavior of NiTi alloys: An atomistic modeling study,” Comput. Mater. Sci. 215, 111804 (2022).10.1016/j.commatsci.2022.111804
|
[34] |
S. B. Xi and Y. Su, “A phase field study of the grain-size effect on the thermomechanical behavior of polycrystalline NiTi thin films,” Acta Mech. 232, 4545–4566 (2021).10.1007/s00707-021-03074-6
|
[35] |
X. Y. Wu, F. Wang, J. Wang, X. Yang, X. G. Zeng et al., “Correlation between grain size and dynamic response of NiTi alloy during intense shock-induced multi-spallation,” Mater. Today Commun. 37, 107515 (2023).10.1016/j.mtcomm.2023.107515
|
[36] |
X. Chen, X. Y. Wu, X. Yang, J. Wang, C. Lv et al., “Orientation-dependent multi-spall performance of monocrystalline NiTi alloys under shock compression,” Mater. Today Commun. 40, 109625 (2024).10.1016/j.mtcomm.2024.109625
|
[37] |
Y. C. Zhang, W. L. Yang, X. Yang, J. Wang, C. Lv et al., “Dynamic damage response of sing-crystal NiTi alloys induced by shear localization,” Acta Mech. Sin. 41, 124177 (2025).10.1007/s10409-024-24177-x
|
[38] |
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown et al., “LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 108171 (2022).10.1016/j.cpc.2021.108171
|
[39] |
W. S. Lai and B. X. Liu, “Lattice stability of some Ni–Ti alloy phases versus their chemical composition and disordering,” J. Phys.: Condens. Matter 12, L53–L60 (2000).10.1088/0953-8984/12/5/101
|
[40] |
Y. Zhong, K. Gall, and T. Zhu, “Atomistic study of nanotwins in NiTi shape memory alloys,” J. Appl. Phys. 110, 033532 (2011).10.1063/1.3621429
|
[41] |
P. Hirel, “Atomsk: A tool for manipulating and converting atomic data files,” Comput. Phys. Commun. 197, 212–219 (2015).10.1016/j.cpc.2015.07.012
|
[42] |
W. S. Ko, S. B. Maisel, B. Grabowski, J. B. Jeon, and J. Neugebauer, “Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys,” Acta Mater. 123, 90–101 (2017).10.1016/j.actamat.2016.10.019
|
[43] |
A. P. Thompson, S. J. Plimpton, and W. Mattson, “General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions,” J. Chem. Phys. 131, 154107 (2009).10.1063/1.3245303
|
[44] |
J. Wang, F. Wang, X. Y. Wu, Z. P. Xu, and X. Yang, “Orientation-induced anisotropy of plasticity and damage behavior in monocrystalline tantalum under shock compression,” Vacuum 207, 111679 (2023).10.1016/j.vacuum.2022.111679
|
[45] |
A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).10.1088/0965-0393/18/1/015012
|
[46] |
A. Stukowski, “Computational analysis methods in atomistic modeling of crystals,” JOM 66, 399–407 (2014).10.1007/s11837-013-0827-5
|
[47] |
A. Stukowski, V. V. Bulatov, and A. Arsenlis, “Automated identification and indexing of dislocations in crystal interfaces,” Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).10.1088/0965-0393/20/8/085007
|
[48] |
P. M. Larsen, S. Schmidt, and J. Schiotz, “Robust structural identification via polyhedral template matching,” Modell. Simul. Mater. Sci. Eng. 24, 055007 (2016).10.1088/0965-0393/24/5/055007
|
[49] |
J. F. Panzarino and T. J. Rupert, “Tracking microstructure of crystalline materials: A post-processing algorithm for atomistic simulations,” JOM 66, 417–428 (2014).10.1007/s11837-013-0831-9
|
[50] |
S. N. Naik and S. M. Walley, “The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals,” J. Mater. Sci. 55, 2661–2681 (2020).10.1007/s10853-019-04160-w
|
[51] |
V. I. Zel’dovich, A. E. Kheifets, N. Y. Frolova, A. A. Degtyarev, E. B. Smirnov et al., “Metallographic study of the convergence of cylindrical copper shells at different intensities of explosive loading,” Phys. Met. Metallogr. 122, 566–571 (2021).10.1134/S0031918X21060132
|
[52] |
J. L. Dong, X. P. Zhang, G. J. Wang, X. Q. Wu, B. Q. Luo et al., “Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression,” Matter Radiat. Extremes 9, 057802 (2024).10.1063/5.0206773
|
[53] |
S. X. Zhu, Y. Z. Guo, Q. C. Ruan, H. S. Chen, Y. L. Li, and D. Fang, “Formation of adiabatic shear band within Ti-6Al-4V: An in-situ study with high-speed photography and temperature measurement,” Int. J. Mech. Sci. 171, 105401 (2020).10.1016/j.ijmecsci.2019.105401
|
[54] |
A. E. Mayer, E. N. Borodin, and P. N. Mayer, “Localization of plastic flow at high-rate simple shear,” Int. J. Plast. 51, 188–199 (2013).10.1016/j.ijplas.2013.05.005
|
[55] |
V. S. Krasnikov and A. E. Mayer, “Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading,” Mater. Sci. Eng.: A 619, 354–363 (2014).10.1016/j.msea.2014.09.105
|
[56] |
T. de Rességuier, E. Lescoute, D. Loison, J. M. Chevalier, and F. Ducasse, “Effects of cryogenic temperature on dynamic fragmentation of laser shock-loaded metal foils,” J. Appl. Phys. 110, 123504 (2011).10.1063/1.3670005
|
[57] |
M. Z. Xiang, H. B. Hu, and J. Chen, “Spalling and melting in nanocrystalline Pb under shock loading: Molecular dynamics studies,” J. Appl. Phys. 113, 144312 (2013).10.1063/1.4799388
|
[58] |
W. S. Lee, T. H. Chen, C. F. Lin, and G. T. Lu, “Adiabatic shearing localisation in high strain rate deformation of Al–Sc alloy,” Mater. Trans. 51, 1216–1221 (2010).10.2320/matertrans.m2010053
|
[59] |
Y. Y. He, Z. H. Zhang, S. Y. Yang, H. K. Wang, X. W. Cheng et al., “Deformation and fracture mechanism of Ti-6Al-4V target at high and hyper velocity impact,” Int. J. Impact Eng. 169, 104312 (2022).10.1016/j.ijimpeng.2022.104312
|
[60] |
I. A. Ovid’ko, R. Z. Valiev, and Y. T. Zhu, “Review on superior strength and enhanced ductility of metallic nanomaterials,” Prog. Mater. Sci. 94, 462–540 (2018).10.1016/j.pmatsci.2018.02.002
|
[61] |
V. S. Dozhdikov, A. Y. Basharin, and P. R. Levashov, “Two-phase simulation of the crystalline silicon melting line at pressures from −1 to 3 GPa,” J. Chem. Phys. 137, 054502 (2012).10.1063/1.4739085
|