Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
Hao Jue Xuan, Tang Xiang, Arefiev Alexey, Kingham Robert J., Zhu Ping, Shi Yin, Zheng Jian. Generation of 10 kT axial magnetic fields using multiple conventional laser beams: A sensitivity study for kJ PW-class laser facilities[J]. Matter and Radiation at Extremes, 2025, 10(1): 017201. doi: 10.1063/5.0235188
Citation: Hao Jue Xuan, Tang Xiang, Arefiev Alexey, Kingham Robert J., Zhu Ping, Shi Yin, Zheng Jian. Generation of 10 kT axial magnetic fields using multiple conventional laser beams: A sensitivity study for kJ PW-class laser facilities[J]. Matter and Radiation at Extremes, 2025, 10(1): 017201. doi: 10.1063/5.0235188

Generation of 10 kT axial magnetic fields using multiple conventional laser beams: A sensitivity study for kJ PW-class laser facilities

doi: 10.1063/5.0235188
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: shiyin@ustc.edu.cn
  • Received Date: 2024-08-26
  • Accepted Date: 2024-10-05
  • Available Online: 2025-01-01
  • Publish Date: 2025-01-02
  • Strong multi-kilotesla magnetic fields have various applications in high-energy density science and laboratory astrophysics, but they are not readily available. In our previous work [Y. Shi et al., Phys. Rev. Lett. 130 , 155101 (2023)], we developed a novel approach for generating such fields using multiple conventional laser beams with a twist in the pointing direction. This method is particularly well-suited for multi-kilojoule petawatt-class laser systems like SG-II UP, which are designed with multiple linearly polarized beamlets. Utilizing three-dimensional kinetic particle-in-cell simulations, we examine critical factors for a proof-of-principle experiment, such as laser polarization, relative pulse delay, phase offset, pointing stability, and target configuration, and their impact on magnetic field generation. Our general conclusion is that the approach is very robust and can be realized under a wide range of laser parameters and plasma conditions. We also provide an in-depth analysis of the axial magnetic field configuration, azimuthal electron current, and electron and ion orbital angular momentum densities. Supported by a simple model, our analysis shows that the axial magnetic field decays owing to the expansion of hot electrons.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Jue Xuan Hao: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Project administration (equal); Software (lead); Supervision (equal); Validation (lead); Visualization (lead); Writing – original draft (lead); Writing – review & editing (lead). Xiang Tang: Software (supporting); Writing – original draft (supporting); Writing – review & editing (supporting). Alexey Arefiev: Conceptualization (supporting); Funding acquisition (supporting); Writing – original draft (equal); Writing – review & editing (equal). Robert J. Kingham: Writing – original draft (supporting). Ping Zhu: Validation (equal). Yin Shi: Conceptualization (lead); Funding acquisition (lead); Methodology (equal); Project administration (lead); Resources (lead); Supervision (lead); Writing – original draft (equal); Writing – review & editing (equal). Jian Zheng: Conceptualization (supporting); Project administration (supporting); Supervision (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    C. Plechaty, R. Presura, S. Stein, D. Martinez, S. Neff et al., “Penetration of a laser-produced plasma across an applied magnetic field,” High Energy Density Phys. 6, 258–261 (2010), part of Special Issue: iCHED 2009 - 2nd International Conference on High Energy Density Physics.10.1016/j.hedp.2009.12.006
    [2]
    B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al., “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346, 325–328 (2014).10.1126/science.1259694
    [3]
    D. Schaeffer, W. Fox, D. Haberberger, G. Fiksel, A. Bhattacharjee et al., “High-Mach number, laser-driven magnetized collisionless shocks,” Phys. Plasmas 24, 122702 (2017).10.1063/1.4989562
    [4]
    T. Byvank, J. T. Banasek, W. M. Potter, J. B. Greenly, C. E. Seyler et al., “Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation,” Phys. Plasmas 24, 122701 (2017).10.1063/1.5003777
    [5]
    K. Matsuo, N. Higashi, N. Iwata, S. Sakata, S. Lee et al., “Petapascal pressure driven by fast isochoric heating with a multipicosecond intense laser pulse,” Phys. Rev. Lett. 124(3), 035001 (2020).10.1103/physrevlett.124.035001
    [6]
    L. Yi, B. Shen, A. Pukhov, and T. Fülöp, “Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab,” Nat. Commun. 9(1), 1601 (2018).10.1038/s41467-018-04065-3
    [7]
    Y. Ping, J. Zhong, X. Wang, G. Zhao, Y. Li et al., “Reconnection rate and multi-scale relativistic magnetic reconnection driven by ultra-intense lasers,” Plasma Phys. Controlled Fusion 63, 085012 (2021).10.1088/1361-6587/ac031c
    [8]
    A. E. Raymond, C. F. Dong, A. McKelvey, C. Zulick, N. Alexander et al., “Relativistic-electron-driven magnetic reconnection in the laboratory,” Phys. Rev. E 98, 043207 (2018).10.1103/physreve.98.043207
    [9]
    K. F. F. Law, Y. Abe, A. Morace, Y. Arikawa, S. Sakata et al., “Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system,” Phys. Rev. E 102, 033202 (2020).10.1103/physreve.102.033202
    [10]
    Y. J. Gu, O. Klimo, D. Kumar, Y. Liu, S. K. Singh et al., “Fast magnetic-field annihilation in the relativistic collisionless regime driven by two ultrashort high-intensity laser pulses,” Phys. Rev. E 93, 013203 (2016).10.1103/physreve.93.013203
    [11]
    A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18, 105011 (2016).10.1088/1367-2630/18/10/105011
    [12]
    W. Yao, M. Nakatsutsumi, S. Buffechoux, P. Antici, M. Borghesi et al., “Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers,” Matter Radiat. Extremes 9, 047202 (2024).10.1063/5.0184919
    [13]
    S. X. Luan, W. Yu, F. Y. Li, D. Wu, Z. M. Sheng et al., “Publisher’s Note: Laser propagation in dense magnetized plasma [Phys. Rev. E 94, 053207 (2016)],” Phys. Rev. E 94, 069903 (2016).10.1103/physreve.94.069903
    [14]
    T. Sano, Y. Tanaka, N. Iwata, M. Hata, K. Mima et al., “Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas,” Phys. Rev. E 96, 043209 (2017).10.1103/physreve.96.043209
    [15]
    K. Li and W. Yu, “Laser propagation in a highly magnetized over-dense plasma,” Phys. Plasmas 27, 102712 (2020).10.1063/5.0018624
    [16]
    K. Li and W. Yu, “Optical probing of magnet-induced transparent over-dense plasma in a whistler mode,” Phys. Plasmas 30, 092105 (2023).10.1063/5.0156320
    [17]
    D. Liu, W. Fan, L. Shan, C. Tian, B. Bi et al., “Ab initio simulations for expanded gold fluid in metal-nonmetal transition regime,” Phys. Plasmas 26, 122705 (2019).10.1063/1.5123512
    [18]
    K. Higuchi, D. B. Hamal, and M. Higuchi, “Nonperturbative description of the butterfly diagram of energy spectra for materials immersed in a magnetic field,” Phys. Rev. B 97, 195135 (2018).10.1103/physrevb.97.195135
    [19]
    T. Liseykina, A. Macchi, and S. Popruzhenko, “Quantum effects on radiation friction driven magnetic field generation,” Eur. Phys. J. Plus 136, 170 (2021).10.1140/epjp/s13360-020-01030-2
    [20]
    F. Herlach and N. Miura, High Magnetic Fields: Science and Technology (World Scientific Publishing Company, 2006), pp. 1–312.
    [21]
    D. J. Strozzi, M. Tabak, D. J. Larson, L. Divol, A. J. Kemp et al., “Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields,” Phys. Plasmas 19, 072711 (2012).10.1063/1.4739294
    [22]
    R. Z. Sagdeev, “Cooperative phenomena and shock waves in collisionless plasmas,” Rev. Plasma Phys. 4, 23 (1966).
    [23]
    W. Yao, A. Fazzini, S. N. Chen, K. Burdonov, P. Antici et al., “Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization,” Matter Radiat. Extremes 7, 014402 (2021).10.1063/5.0055071
    [24]
    A. V. Kuznetsov, T. Z. Esirkepov, F. F. Kamenets, and S. V. Bulanov, “Efficiency of ion acceleration by a relativistically strong laser pulse in an underdense plasma,” Plasma Phys. Rep.s 27, 211–220 (2001).10.1134/1.1354219
    [25]
    Y. Fukuda, A. Y. Faenov, M. Tampo, T. A. Pikuz, T. Nakamura et al., “Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target,” Phys. Rev. Lett. 103, 165002 (2009).10.1103/physrevlett.103.165002
    [26]
    T. Nakamura, S. V. Bulanov, T. Z. Esirkepov, and M. Kando, “High-energy ions from near-critical density plasmas via magnetic vortex acceleration,” Phys. Rev. Lett. 105, 135002 (2010).10.1103/physrevlett.105.135002
    [27]
    S. S. Bulanov, E. Esarey, C. B. Schroeder, W. P. Leemans, S. V. Bulanov et al., “Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy,” Phys. Rev. Spec. Top.--Accel. Beams 18, 061302 (2015).10.1103/physrevstab.18.061302
    [28]
    J. Park, S. S. Bulanov, J. Bin, Q. Ji, S. Steinke et al., “Ion acceleration in laser generated megatesla magnetic vortex,” Phys. Plasmas 26, 103108 (2019).10.1063/1.5094045
    [29]
    J. X. Gong, L. H. Cao, K. Q. Pan, K. D. Xiao, D. Wu et al., “Enhancement of proton acceleration by a right-handed circularly polarized laser interaction with a cone target exposed to a longitudinal magnetic field,” Phys. Plasmas 24, 053109 (2017).10.1063/1.4984246
    [30]
    Y. Gu and S. V. Bulanov, “Magnetic field annihilation and charged particle acceleration in ultra-relativistic laser plasmas,” High Power Laser Sci. Eng. 9, e2 (2021).10.1017/hpl.2020.45
    [31]
    B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht et al., “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551
    [32]
    R. V. Shapovalov, G. Brent, R. Moshier, M. Shoup, R. B. Spielman et al., “Design of 30-T pulsed magnetic field generator for magnetized high-energy-density plasma experiments,” Phys. Rev. Accel. Beams 22, 080401 (2019).10.1103/physrevaccelbeams.22.080401
    [33]
    P. Hu, G.-Y. Hu, Y.-L. Wang, H.-B. Tang, Z.-C. Zhang et al., “Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility,” Rev. Sci. Instrum. 91(1), 014703 (2020).10.1063/1.5139613
    [34]
    R. J. Mason and M. Tabak, “Magnetic field generation in high-intensity-laser–matter interactions,” Phys. Rev. Lett. 80, 524–527 (1998).10.1103/physrevlett.80.524
    [35]
    U. Wagner, M. Tatarakis, A. Gopal, F. N. Beg, E. L. Clark et al., “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).10.1103/physreve.70.026401
    [36]
    Y. C. Yang, T. W. Huang, M. Y. Yu, K. Jiang, and C. T. Zhou, “Generation of jet-forming plasma bunch with gigagauss axial magnetic field from impact of linearly polarized laser on microtube targets,” Phys. Plasmas 30, 112103 (2023).10.1063/5.0165359
    [37]
    M.-A. H. Zosa, Y. J. Gu, and M. Murakami, “100-kT magnetic field generation using paisley targets by femtosecond laser–plasma interactions,” Appl. Phys. Lett. 120, 132403 (2022).10.1063/5.0081115
    [38]
    M. Roth and M. S. Schollmeier, in B. Holzer (Ed.) Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration, CERN-2016-001 (CERN, Geneva, 2016), p. 231.
    [39]
    D. Nakamura, A. Ikeda, H. Sawabe, Y. H. Matsuda, and S. Takeyama, “Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression,” Rev. Sci. Instrum. 89, 095106 (2018).10.1063/1.5044557
    [40]
    A. B. Sefkow, S. A. Slutz, J. M. Koning, M. M. Marinak, K. J. Peterson et al., “Design of magnetized liner inertial fusion experiments using the Z facility,” Phys. Plasmas 21, 072711 (2014).10.1063/1.4890298
    [41]
    O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov et al., “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103, 215004 (2009).10.1103/physrevlett.103.215004
    [42]
    J. D. Moody, “Boosting inertial-confinement-fusion yield with magnetized fuel,” Physics 14, 51 (2021).10.1103/physics.14.51
    [43]
    J. J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka et al., “Laser-driven platform for generation and characterization of strong quasi-static magnetic fields,” New J. Phys. 17, 083051 (2015).10.1088/1367-2630/17/8/083051
    [44]
    I. V. Kochetkov, N. Bukharskii, M. Ehret, Y. Abe, K. F. F. Law et al., “Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses,” Sci. Rep. 12, 13734 (2022).10.1038/s41598-022-17202-2
    [45]
    C. Vlachos, V. Ospina-Bohórquez, P. W. Bradford, G. Pérez-Callejo, M. Ehret et al., “Laser-driven quasi-static B-fields for magnetized high-energy-density experiments,” Phys. Plasmas 31, 032702 (2024).10.1063/5.0190305
    [46]
    B. K. Russell, P. T. Campbell, Q. Qian, J. A. Cardarelli, S. S. Bulanov et al., “Ultrafast relativistic electron probing of extreme magnetic fields,” Phys. Plasmas 30, 093105 (2023).10.1063/5.0163392
    [47]
    B. Zhu, Z. Zhang, C. Liu, D. Yuan, W. Jiang et al., “Observation of Zeeman splitting effect in a laser-driven coil,” Matter Radiat. Extremes 7, 024402 (2022).10.1063/5.0060954
    [48]
    J. L. Peebles, J. R. Davies, D. H. Barnak, F. Garcia-Rubio, P. V. Heuer et al., “An assessment of generating quasi-static magnetic fields using laser-driven ‘capacitor’ coils,” Phys. Plasmas 29, 080501 (2022).10.1063/5.0096784
    [49]
    G. Liao, Y. Li, B. Zhu, Y. Li, F. Li et al., “Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses,” Matter Radiat. Extremes 1, 187–191 (2016).10.1016/j.mre.2016.06.003
    [50]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).10.1016/0030-4018(85)90120-8
    [51]
    M. Tatarakis, I. Watts, F. N. Beg, E. L. Clark, A. E. Dangor et al., “Measuring huge magnetic fields,” Nature 415, 280 (2002).10.1038/415280a
    [52]
    X. X. Li, R. J. Cheng, Q. Wang, D. J. Liu, S. Y. Lv et al., “Anomalous staged hot-electron acceleration by two-plasmon decay instability in magnetized plasmas,” Phys. Rev. E 108, L053201 (2023).10.1103/physreve.108.l053201
    [53]
    D. J. Stark, T. Toncian, and A. V. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116, 185003 (2016).10.1103/physrevlett.116.185003
    [54]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [55]
    J. Kawanaka, N. Miyanaga, H. Azechi, T. Kanabe, T. Jitsuno et al., “3.1-kJ chirped-pulse power amplification in the LFEX laser,” J. Phys.: Conf. Ser. 112, 032006 (2008).10.1088/1742-6596/112/3/032006
    [56]
    J. K. Crane, G. Tietbohl, P. Arnold, E. S. Bliss, C. Boley et al., “Progress on converting a NIF quad to eight, petawatt beams for advanced radiography,” J. Phys.: Conf. Ser. 244, 032003 (2010).10.1088/1742-6596/244/3/032003
    [57]
    D. Batani, M. Koenig, J. L. Miquel, J. E. Ducret, E. d’Humieres et al., “Development of the petawatt aquitaine laser system and new perspectives in physics,” Phys. Scr. T161, 014016 (2014).10.1088/0031-8949/2014/t161/014016
    [58]
    A. Morace, N. Iwata, Y. Sentoku, K. Mima, Y. Arikawa et al., “Enhancing laser beam performance by interfering intense laser beamlets,” Nat. Commun. 10, 2995 (2019).10.1038/s41467-019-10997-1
    [59]
    J. Zhu, J. Zhu, X. Li, B. Zhu, W. Ma et al., “Status and development of high-power laser facilities at the NLHPLP,” High Power Laser Sci. Eng. 6, e55 (2018).10.1017/hpl.2018.46
    [60]
    M. G. Haines, “Generation of an axial magnetic field from photon spin,” Phys. Rev. Lett. 87, 135005 (2001).10.1103/physrevlett.87.135005
    [61]
    L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).10.1103/physreva.45.8185
    [62]
    S. Ali, J. R. Davies, and J. T. Mendonca, “Inverse faraday effect with linearly polarized laser pulses,” Phys. Rev. Lett. 105, 035001 (2010).10.1103/physrevlett.105.035001
    [63]
    R. Nuter, P. Korneev, E. Dmitriev, I. Thiele, and V. T. Tikhonchuk, “Gain of electron orbital angular momentum in a direct laser acceleration process,” Phys. Rev. E 101, 053202 (2020).10.1103/physreve.101.053202
    [64]
    A. Longman and R. Fedosejevs, “Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams,” Phys. Rev. Res. 3, 043180 (2021).10.1103/physrevresearch.3.043180
    [65]
    Z. Li, Y. Leng, and R. Li, “Further development of the short-pulse petawatt laser: Trends, technologies, and bottlenecks,” Laser Photonics Rev. 17, 2100705 (2022).10.1002/lpor.202100705
    [66]
    Y. Shi, A. Arefiev, J. X. Hao, and J. Zheng, “Efficient generation of axial magnetic field by multiple laser beams with twisted pointing directions,” Phys. Rev. Lett. 130, 155101 (2023).10.1103/physrevlett.130.155101
    [67]
    K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).10.1038/nphoton.2015.201
    [68]
    C. Liu, B. Shen, X. Zhang, Y. Shi, L. Ji et al., “Generation of gamma-ray beam with orbital angular momentum in the QED regime,” Phys. Plasmas 23, 093120 (2016).10.1063/1.4963396
    [69]
    Y.-Y. Chen, J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “γ-ray beams with large orbital angular momentum via nonlinear compton scattering with radiation reaction,” Phys. Rev. Lett. 121, 074801 (2018).10.1103/physrevlett.121.074801
    [70]
    Y.-Y. Chen, K. Z. Hatsagortsyan, and C. H. Keitel, “Generation of twisted γ-ray radiation by nonlinear Thomson scattering of twisted light,” Matter Radiat. Extremes 4, 024401 (2019).10.1063/1.5086347
    [71]
    T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [72]
    K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10, 18966 (2020).10.1038/s41598-020-75915-8
    [73]
    J. Griff-McMahon, S. Malko, V. Valenzuela-Villaseca, C. Walsh, G. Fiksel et al., “Measurements of extended magnetic fields in laser-solid interaction,” Phys. Rev. Res. 6, 033312 (2024).10.1103/PhysRevResearch.6.033312 033312
    [74]
    G. Pérez-Callejo, C. Vlachos, C. A. Walsh, R. Florido, M. Bailly-Grandvaux et al., “Cylindrical implosion platform for the study of highly magnetized plasmas at laser megajoule,” Phys. Rev. E 106, 035206 (2022).10.1103/physreve.106.035206
    [75]
    J. D. Jackson, Electrodynamics (Wiley Online Library, 1975).
    [76]
    Y. Shi, J. Vieira, R. Trines, R. Bingham, B. Shen et al., “Magnetic field generation in plasma waves driven by copropagating intense twisted lasers,” Phys. Rev. Lett. 121(14), 145002 (2018).10.1103/physrevlett.121.145002
    [77]
    T. V. Liseykina, S. V. Popruzhenko, and A. Macchi, “Inverse Faraday effect driven by radiation friction,” New J. Phys. 18, 072001 (2016).10.1088/1367-2630/18/7/072001
    [78]
    S. V. Popruzhenko, T. V. Liseykina, and A. Macchi, “Efficiency of radiation friction losses in laser-driven ‘hole boring’ of dense targets,” New J. Phys. 21, 033009 (2019).10.1088/1367-2630/ab0119
    [79]
    F. Brunel, “Anomalous absorption of high intensity subpicosecond laser pulses,” Phys. Fluids 31, 2714–2719 (1988).10.1063/1.867001
    [80]
    M. C. Levy, S. C. Wilks, M. Tabak, S. B. Libby, and M. G. Baring, “Petawatt laser absorption bounded,” Nat. Commun. 5, 4149 (2014).10.1038/ncomms5149
    [81]
    A. Grassi, M. Grech, F. Amiranoff, A. Macchi, and C. Riconda, “Radiation-pressure-driven ion Weibel instability and collisionless shocks,” Phys. Rev. E 96, 033204 (2017).10.1103/physreve.96.033204
    [82]
    D. D. Meyerhofer, H. Chen, J. A. Delettrez, B. Soom, S. Uchida et al., “Resonance absorption in high-intensity contrast, picosecond laser–plasma interactions,” Phys. Fluids B 5, 2584–2588 (1993).10.1063/1.860694
    [83]
    J. S. Pearlman, J. J. Thomson, and C. E. Max, “Polarization-dependent absorption of laser radiation incident on dense-plasma planar targets,” Phys. Rev. Lett. 38, 1397–1400 (1977).10.1103/physrevlett.38.1397
    [84]
    J. S. Pearlman and M. K. Matzen, “Angular dependence of polarization-related laser-plasma absorption processes,” Phys. Rev. Lett. 39, 140–142 (1977).10.1103/physrevlett.39.140
    [85]
    J. E. Balmer and T. P. Donaldson, “Resonance absorption of 1.06-μm laser radiation in laser-generated plasma,” Phys. Rev. Lett. 39, 1084–1087 (1977).10.1103/physrevlett.39.1084
    [86]
    A. V. Arefiev, V. N. Khudik, A. P. L. Robinson, G. Shvets, L. Willingale et al., “Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas,” Phys. Plasmas 23, 056704 (2016).10.1063/1.4946024
    [87]
    A. Sorokovikova, A. V. Arefiev, C. McGuffey, B. Qiao, A. P. L. Robinson et al., “Generation of superponderomotive electrons in multipicosecond interactions of kilojoule laser beams with solid-density plasmas,” Phys. Rev. Lett. 116, 155001 (2016).10.1103/physrevlett.116.155001
    [88]
    J. Peebles, M. S. Wei, A. V. Arefiev, C. McGuffey, R. B. Stephens et al., “Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP,” New J. Phys. 19, 023008 (2017).10.1088/1367-2630/aa5a21
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (45) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return