Citation: | Hao Jue Xuan, Tang Xiang, Arefiev Alexey, Kingham Robert J., Zhu Ping, Shi Yin, Zheng Jian. Generation of 10 kT axial magnetic fields using multiple conventional laser beams: A sensitivity study for kJ PW-class laser facilities[J]. Matter and Radiation at Extremes, 2025, 10(1): 017201. doi: 10.1063/5.0235188 |
[1] |
C. Plechaty, R. Presura, S. Stein, D. Martinez, S. Neff et al., “Penetration of a laser-produced plasma across an applied magnetic field,” High Energy Density Phys. 6, 258–261 (2010), part of Special Issue: iCHED 2009 - 2nd International Conference on High Energy Density Physics.10.1016/j.hedp.2009.12.006
|
[2] |
B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al., “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346, 325–328 (2014).10.1126/science.1259694
|
[3] |
D. Schaeffer, W. Fox, D. Haberberger, G. Fiksel, A. Bhattacharjee et al., “High-Mach number, laser-driven magnetized collisionless shocks,” Phys. Plasmas 24, 122702 (2017).10.1063/1.4989562
|
[4] |
T. Byvank, J. T. Banasek, W. M. Potter, J. B. Greenly, C. E. Seyler et al., “Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation,” Phys. Plasmas 24, 122701 (2017).10.1063/1.5003777
|
[5] |
K. Matsuo, N. Higashi, N. Iwata, S. Sakata, S. Lee et al., “Petapascal pressure driven by fast isochoric heating with a multipicosecond intense laser pulse,” Phys. Rev. Lett. 124(3), 035001 (2020).10.1103/physrevlett.124.035001
|
[6] |
L. Yi, B. Shen, A. Pukhov, and T. Fülöp, “Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab,” Nat. Commun. 9(1), 1601 (2018).10.1038/s41467-018-04065-3
|
[7] |
Y. Ping, J. Zhong, X. Wang, G. Zhao, Y. Li et al., “Reconnection rate and multi-scale relativistic magnetic reconnection driven by ultra-intense lasers,” Plasma Phys. Controlled Fusion 63, 085012 (2021).10.1088/1361-6587/ac031c
|
[8] |
A. E. Raymond, C. F. Dong, A. McKelvey, C. Zulick, N. Alexander et al., “Relativistic-electron-driven magnetic reconnection in the laboratory,” Phys. Rev. E 98, 043207 (2018).10.1103/physreve.98.043207
|
[9] |
K. F. F. Law, Y. Abe, A. Morace, Y. Arikawa, S. Sakata et al., “Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system,” Phys. Rev. E 102, 033202 (2020).10.1103/physreve.102.033202
|
[10] |
Y. J. Gu, O. Klimo, D. Kumar, Y. Liu, S. K. Singh et al., “Fast magnetic-field annihilation in the relativistic collisionless regime driven by two ultrashort high-intensity laser pulses,” Phys. Rev. E 93, 013203 (2016).10.1103/physreve.93.013203
|
[11] |
A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18, 105011 (2016).10.1088/1367-2630/18/10/105011
|
[12] |
W. Yao, M. Nakatsutsumi, S. Buffechoux, P. Antici, M. Borghesi et al., “Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers,” Matter Radiat. Extremes 9, 047202 (2024).10.1063/5.0184919
|
[13] |
S. X. Luan, W. Yu, F. Y. Li, D. Wu, Z. M. Sheng et al., “Publisher’s Note: Laser propagation in dense magnetized plasma [Phys. Rev. E 94, 053207 (2016)],” Phys. Rev. E 94, 069903 (2016).10.1103/physreve.94.069903
|
[14] |
T. Sano, Y. Tanaka, N. Iwata, M. Hata, K. Mima et al., “Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas,” Phys. Rev. E 96, 043209 (2017).10.1103/physreve.96.043209
|
[15] |
K. Li and W. Yu, “Laser propagation in a highly magnetized over-dense plasma,” Phys. Plasmas 27, 102712 (2020).10.1063/5.0018624
|
[16] |
K. Li and W. Yu, “Optical probing of magnet-induced transparent over-dense plasma in a whistler mode,” Phys. Plasmas 30, 092105 (2023).10.1063/5.0156320
|
[17] |
D. Liu, W. Fan, L. Shan, C. Tian, B. Bi et al., “Ab initio simulations for expanded gold fluid in metal-nonmetal transition regime,” Phys. Plasmas 26, 122705 (2019).10.1063/1.5123512
|
[18] |
K. Higuchi, D. B. Hamal, and M. Higuchi, “Nonperturbative description of the butterfly diagram of energy spectra for materials immersed in a magnetic field,” Phys. Rev. B 97, 195135 (2018).10.1103/physrevb.97.195135
|
[19] |
T. Liseykina, A. Macchi, and S. Popruzhenko, “Quantum effects on radiation friction driven magnetic field generation,” Eur. Phys. J. Plus 136, 170 (2021).10.1140/epjp/s13360-020-01030-2
|
[20] |
F. Herlach and N. Miura, High Magnetic Fields: Science and Technology (World Scientific Publishing Company, 2006), pp. 1–312.
|
[21] |
D. J. Strozzi, M. Tabak, D. J. Larson, L. Divol, A. J. Kemp et al., “Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields,” Phys. Plasmas 19, 072711 (2012).10.1063/1.4739294
|
[22] |
R. Z. Sagdeev, “Cooperative phenomena and shock waves in collisionless plasmas,” Rev. Plasma Phys. 4, 23 (1966).
|
[23] |
W. Yao, A. Fazzini, S. N. Chen, K. Burdonov, P. Antici et al., “Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization,” Matter Radiat. Extremes 7, 014402 (2021).10.1063/5.0055071
|
[24] |
A. V. Kuznetsov, T. Z. Esirkepov, F. F. Kamenets, and S. V. Bulanov, “Efficiency of ion acceleration by a relativistically strong laser pulse in an underdense plasma,” Plasma Phys. Rep.s 27, 211–220 (2001).10.1134/1.1354219
|
[25] |
Y. Fukuda, A. Y. Faenov, M. Tampo, T. A. Pikuz, T. Nakamura et al., “Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target,” Phys. Rev. Lett. 103, 165002 (2009).10.1103/physrevlett.103.165002
|
[26] |
T. Nakamura, S. V. Bulanov, T. Z. Esirkepov, and M. Kando, “High-energy ions from near-critical density plasmas via magnetic vortex acceleration,” Phys. Rev. Lett. 105, 135002 (2010).10.1103/physrevlett.105.135002
|
[27] |
S. S. Bulanov, E. Esarey, C. B. Schroeder, W. P. Leemans, S. V. Bulanov et al., “Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy,” Phys. Rev. Spec. Top.--Accel. Beams 18, 061302 (2015).10.1103/physrevstab.18.061302
|
[28] |
J. Park, S. S. Bulanov, J. Bin, Q. Ji, S. Steinke et al., “Ion acceleration in laser generated megatesla magnetic vortex,” Phys. Plasmas 26, 103108 (2019).10.1063/1.5094045
|
[29] |
J. X. Gong, L. H. Cao, K. Q. Pan, K. D. Xiao, D. Wu et al., “Enhancement of proton acceleration by a right-handed circularly polarized laser interaction with a cone target exposed to a longitudinal magnetic field,” Phys. Plasmas 24, 053109 (2017).10.1063/1.4984246
|
[30] |
Y. Gu and S. V. Bulanov, “Magnetic field annihilation and charged particle acceleration in ultra-relativistic laser plasmas,” High Power Laser Sci. Eng. 9, e2 (2021).10.1017/hpl.2020.45
|
[31] |
B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht et al., “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551
|
[32] |
R. V. Shapovalov, G. Brent, R. Moshier, M. Shoup, R. B. Spielman et al., “Design of 30-T pulsed magnetic field generator for magnetized high-energy-density plasma experiments,” Phys. Rev. Accel. Beams 22, 080401 (2019).10.1103/physrevaccelbeams.22.080401
|
[33] |
P. Hu, G.-Y. Hu, Y.-L. Wang, H.-B. Tang, Z.-C. Zhang et al., “Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility,” Rev. Sci. Instrum. 91(1), 014703 (2020).10.1063/1.5139613
|
[34] |
R. J. Mason and M. Tabak, “Magnetic field generation in high-intensity-laser–matter interactions,” Phys. Rev. Lett. 80, 524–527 (1998).10.1103/physrevlett.80.524
|
[35] |
U. Wagner, M. Tatarakis, A. Gopal, F. N. Beg, E. L. Clark et al., “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).10.1103/physreve.70.026401
|
[36] |
Y. C. Yang, T. W. Huang, M. Y. Yu, K. Jiang, and C. T. Zhou, “Generation of jet-forming plasma bunch with gigagauss axial magnetic field from impact of linearly polarized laser on microtube targets,” Phys. Plasmas 30, 112103 (2023).10.1063/5.0165359
|
[37] |
M.-A. H. Zosa, Y. J. Gu, and M. Murakami, “100-kT magnetic field generation using paisley targets by femtosecond laser–plasma interactions,” Appl. Phys. Lett. 120, 132403 (2022).10.1063/5.0081115
|
[38] |
M. Roth and M. S. Schollmeier, in B. Holzer (Ed.) Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration, CERN-2016-001 (CERN, Geneva, 2016), p. 231.
|
[39] |
D. Nakamura, A. Ikeda, H. Sawabe, Y. H. Matsuda, and S. Takeyama, “Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression,” Rev. Sci. Instrum. 89, 095106 (2018).10.1063/1.5044557
|
[40] |
A. B. Sefkow, S. A. Slutz, J. M. Koning, M. M. Marinak, K. J. Peterson et al., “Design of magnetized liner inertial fusion experiments using the Z facility,” Phys. Plasmas 21, 072711 (2014).10.1063/1.4890298
|
[41] |
O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov et al., “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103, 215004 (2009).10.1103/physrevlett.103.215004
|
[42] |
J. D. Moody, “Boosting inertial-confinement-fusion yield with magnetized fuel,” Physics 14, 51 (2021).10.1103/physics.14.51
|
[43] |
J. J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka et al., “Laser-driven platform for generation and characterization of strong quasi-static magnetic fields,” New J. Phys. 17, 083051 (2015).10.1088/1367-2630/17/8/083051
|
[44] |
I. V. Kochetkov, N. Bukharskii, M. Ehret, Y. Abe, K. F. F. Law et al., “Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses,” Sci. Rep. 12, 13734 (2022).10.1038/s41598-022-17202-2
|
[45] |
C. Vlachos, V. Ospina-Bohórquez, P. W. Bradford, G. Pérez-Callejo, M. Ehret et al., “Laser-driven quasi-static B-fields for magnetized high-energy-density experiments,” Phys. Plasmas 31, 032702 (2024).10.1063/5.0190305
|
[46] |
B. K. Russell, P. T. Campbell, Q. Qian, J. A. Cardarelli, S. S. Bulanov et al., “Ultrafast relativistic electron probing of extreme magnetic fields,” Phys. Plasmas 30, 093105 (2023).10.1063/5.0163392
|
[47] |
B. Zhu, Z. Zhang, C. Liu, D. Yuan, W. Jiang et al., “Observation of Zeeman splitting effect in a laser-driven coil,” Matter Radiat. Extremes 7, 024402 (2022).10.1063/5.0060954
|
[48] |
J. L. Peebles, J. R. Davies, D. H. Barnak, F. Garcia-Rubio, P. V. Heuer et al., “An assessment of generating quasi-static magnetic fields using laser-driven ‘capacitor’ coils,” Phys. Plasmas 29, 080501 (2022).10.1063/5.0096784
|
[49] |
G. Liao, Y. Li, B. Zhu, Y. Li, F. Li et al., “Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses,” Matter Radiat. Extremes 1, 187–191 (2016).10.1016/j.mre.2016.06.003
|
[50] |
D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).10.1016/0030-4018(85)90120-8
|
[51] |
M. Tatarakis, I. Watts, F. N. Beg, E. L. Clark, A. E. Dangor et al., “Measuring huge magnetic fields,” Nature 415, 280 (2002).10.1038/415280a
|
[52] |
X. X. Li, R. J. Cheng, Q. Wang, D. J. Liu, S. Y. Lv et al., “Anomalous staged hot-electron acceleration by two-plasmon decay instability in magnetized plasmas,” Phys. Rev. E 108, L053201 (2023).10.1103/physreve.108.l053201
|
[53] |
D. J. Stark, T. Toncian, and A. V. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116, 185003 (2016).10.1103/physrevlett.116.185003
|
[54] |
C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
|
[55] |
J. Kawanaka, N. Miyanaga, H. Azechi, T. Kanabe, T. Jitsuno et al., “3.1-kJ chirped-pulse power amplification in the LFEX laser,” J. Phys.: Conf. Ser. 112, 032006 (2008).10.1088/1742-6596/112/3/032006
|
[56] |
J. K. Crane, G. Tietbohl, P. Arnold, E. S. Bliss, C. Boley et al., “Progress on converting a NIF quad to eight, petawatt beams for advanced radiography,” J. Phys.: Conf. Ser. 244, 032003 (2010).10.1088/1742-6596/244/3/032003
|
[57] |
D. Batani, M. Koenig, J. L. Miquel, J. E. Ducret, E. d’Humieres et al., “Development of the petawatt aquitaine laser system and new perspectives in physics,” Phys. Scr. T161, 014016 (2014).10.1088/0031-8949/2014/t161/014016
|
[58] |
A. Morace, N. Iwata, Y. Sentoku, K. Mima, Y. Arikawa et al., “Enhancing laser beam performance by interfering intense laser beamlets,” Nat. Commun. 10, 2995 (2019).10.1038/s41467-019-10997-1
|
[59] |
J. Zhu, J. Zhu, X. Li, B. Zhu, W. Ma et al., “Status and development of high-power laser facilities at the NLHPLP,” High Power Laser Sci. Eng. 6, e55 (2018).10.1017/hpl.2018.46
|
[60] |
M. G. Haines, “Generation of an axial magnetic field from photon spin,” Phys. Rev. Lett. 87, 135005 (2001).10.1103/physrevlett.87.135005
|
[61] |
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).10.1103/physreva.45.8185
|
[62] |
S. Ali, J. R. Davies, and J. T. Mendonca, “Inverse faraday effect with linearly polarized laser pulses,” Phys. Rev. Lett. 105, 035001 (2010).10.1103/physrevlett.105.035001
|
[63] |
R. Nuter, P. Korneev, E. Dmitriev, I. Thiele, and V. T. Tikhonchuk, “Gain of electron orbital angular momentum in a direct laser acceleration process,” Phys. Rev. E 101, 053202 (2020).10.1103/physreve.101.053202
|
[64] |
A. Longman and R. Fedosejevs, “Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams,” Phys. Rev. Res. 3, 043180 (2021).10.1103/physrevresearch.3.043180
|
[65] |
Z. Li, Y. Leng, and R. Li, “Further development of the short-pulse petawatt laser: Trends, technologies, and bottlenecks,” Laser Photonics Rev. 17, 2100705 (2022).10.1002/lpor.202100705
|
[66] |
Y. Shi, A. Arefiev, J. X. Hao, and J. Zheng, “Efficient generation of axial magnetic field by multiple laser beams with twisted pointing directions,” Phys. Rev. Lett. 130, 155101 (2023).10.1103/physrevlett.130.155101
|
[67] |
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).10.1038/nphoton.2015.201
|
[68] |
C. Liu, B. Shen, X. Zhang, Y. Shi, L. Ji et al., “Generation of gamma-ray beam with orbital angular momentum in the QED regime,” Phys. Plasmas 23, 093120 (2016).10.1063/1.4963396
|
[69] |
Y.-Y. Chen, J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “γ-ray beams with large orbital angular momentum via nonlinear compton scattering with radiation reaction,” Phys. Rev. Lett. 121, 074801 (2018).10.1103/physrevlett.121.074801
|
[70] |
Y.-Y. Chen, K. Z. Hatsagortsyan, and C. H. Keitel, “Generation of twisted γ-ray radiation by nonlinear Thomson scattering of twisted light,” Matter Radiat. Extremes 4, 024401 (2019).10.1063/1.5086347
|
[71] |
T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
|
[72] |
K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10, 18966 (2020).10.1038/s41598-020-75915-8
|
[73] |
J. Griff-McMahon, S. Malko, V. Valenzuela-Villaseca, C. Walsh, G. Fiksel et al., “Measurements of extended magnetic fields in laser-solid interaction,” Phys. Rev. Res. 6, 033312 (2024).10.1103/PhysRevResearch.6.033312 033312
|
[74] |
G. Pérez-Callejo, C. Vlachos, C. A. Walsh, R. Florido, M. Bailly-Grandvaux et al., “Cylindrical implosion platform for the study of highly magnetized plasmas at laser megajoule,” Phys. Rev. E 106, 035206 (2022).10.1103/physreve.106.035206
|
[75] |
J. D. Jackson, Electrodynamics (Wiley Online Library, 1975).
|
[76] |
Y. Shi, J. Vieira, R. Trines, R. Bingham, B. Shen et al., “Magnetic field generation in plasma waves driven by copropagating intense twisted lasers,” Phys. Rev. Lett. 121(14), 145002 (2018).10.1103/physrevlett.121.145002
|
[77] |
T. V. Liseykina, S. V. Popruzhenko, and A. Macchi, “Inverse Faraday effect driven by radiation friction,” New J. Phys. 18, 072001 (2016).10.1088/1367-2630/18/7/072001
|
[78] |
S. V. Popruzhenko, T. V. Liseykina, and A. Macchi, “Efficiency of radiation friction losses in laser-driven ‘hole boring’ of dense targets,” New J. Phys. 21, 033009 (2019).10.1088/1367-2630/ab0119
|
[79] |
F. Brunel, “Anomalous absorption of high intensity subpicosecond laser pulses,” Phys. Fluids 31, 2714–2719 (1988).10.1063/1.867001
|
[80] |
M. C. Levy, S. C. Wilks, M. Tabak, S. B. Libby, and M. G. Baring, “Petawatt laser absorption bounded,” Nat. Commun. 5, 4149 (2014).10.1038/ncomms5149
|
[81] |
A. Grassi, M. Grech, F. Amiranoff, A. Macchi, and C. Riconda, “Radiation-pressure-driven ion Weibel instability and collisionless shocks,” Phys. Rev. E 96, 033204 (2017).10.1103/physreve.96.033204
|
[82] |
D. D. Meyerhofer, H. Chen, J. A. Delettrez, B. Soom, S. Uchida et al., “Resonance absorption in high-intensity contrast, picosecond laser–plasma interactions,” Phys. Fluids B 5, 2584–2588 (1993).10.1063/1.860694
|
[83] |
J. S. Pearlman, J. J. Thomson, and C. E. Max, “Polarization-dependent absorption of laser radiation incident on dense-plasma planar targets,” Phys. Rev. Lett. 38, 1397–1400 (1977).10.1103/physrevlett.38.1397
|
[84] |
J. S. Pearlman and M. K. Matzen, “Angular dependence of polarization-related laser-plasma absorption processes,” Phys. Rev. Lett. 39, 140–142 (1977).10.1103/physrevlett.39.140
|
[85] |
J. E. Balmer and T. P. Donaldson, “Resonance absorption of 1.06-μm laser radiation in laser-generated plasma,” Phys. Rev. Lett. 39, 1084–1087 (1977).10.1103/physrevlett.39.1084
|
[86] |
A. V. Arefiev, V. N. Khudik, A. P. L. Robinson, G. Shvets, L. Willingale et al., “Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas,” Phys. Plasmas 23, 056704 (2016).10.1063/1.4946024
|
[87] |
A. Sorokovikova, A. V. Arefiev, C. McGuffey, B. Qiao, A. P. L. Robinson et al., “Generation of superponderomotive electrons in multipicosecond interactions of kilojoule laser beams with solid-density plasmas,” Phys. Rev. Lett. 116, 155001 (2016).10.1103/physrevlett.116.155001
|
[88] |
J. Peebles, M. S. Wei, A. V. Arefiev, C. McGuffey, R. B. Stephens et al., “Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP,” New J. Phys. 19, 023008 (2017).10.1088/1367-2630/aa5a21
|