Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
Yin Xiaoshuang, Li Songyang, Wang Lijuan, Liu Peiyuan, Cheng Zhihai, Gou Huiyang, Yang Liuxiang. Macroscopic perspective on phase transition behavior of natural single-crystal graphite under different pressure environments[J]. Matter and Radiation at Extremes, 2025, 10(1): 017801. doi: 10.1063/5.0234582
Citation: Yin Xiaoshuang, Li Songyang, Wang Lijuan, Liu Peiyuan, Cheng Zhihai, Gou Huiyang, Yang Liuxiang. Macroscopic perspective on phase transition behavior of natural single-crystal graphite under different pressure environments[J]. Matter and Radiation at Extremes, 2025, 10(1): 017801. doi: 10.1063/5.0234582

Macroscopic perspective on phase transition behavior of natural single-crystal graphite under different pressure environments

doi: 10.1063/5.0234582
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zhihaicheng@ruc.edu.cn; huiyang.gou@hpstar.ac.cn; and liuxiang.yang@hpstar.ac.cn
  • Received Date: 2024-08-22
  • Accepted Date: 2024-09-25
  • Available Online: 2025-01-01
  • Publish Date: 2025-01-02
  • Comprehensive understanding of the direct transformation pathway from graphite to diamond under high temperature and high pressure has long been one of the fundamental goals in materials science. Despite considerable experimental and theoretical progress, current experimental studies have mainly focused on the local microstructural characterizations of recovered samples, which has certain limitations for high-temperature and high-pressure products, which often exhibit diversity. Here, we report on the pressure-induced phase transition behavior of natural single-crystal graphite under three distinct pressure-transmitting media from a macroscopic perspective using in situ two-dimensional Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. The surface evolution process of graphite before and after the phase transition is captured, revealing that pressure-induced surface textures can impede the continuity of the phase transition process across the entire single crystal. Our results provide a fresh perspective for studying the phase transition behavior of graphite and greatly deepen our understanding of this behavior, which will be helpful in guiding further high-temperature and high-pressure syntheses of carbon allotropes.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Xiaoshuang Yin: Investigation (equal); Methodology (equal); Software (equal); Writing – original draft (equal); Writing – review & editing (equal). Songyang Li: Methodology (equal); Writing – review & editing (equal). Lijuan Wang: Software (equal); Writing – review & editing (equal). Peiyuan Liu: Writing – review & editing (equal). Zhihai Cheng: Funding acquisition (equal); Methodology (equal); Writing – review & editing (equal). Huiyang Gou: Data curation (equal); Funding acquisition (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal). Liuxiang Yang: Conceptualization (equal); Data curation (equal); Funding acquisition (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    A. W. Hull, “A new method of X-ray crystal analysis,” Phys. Rev. 10(6), 661–696 (1917).10.1103/PhysRev.10.661
    [2]
    E. J. Freise, “Structure of graphite,” Nature 193(4816), 671–672 (1962).10.1038/193671a0
    [3]
    J. D. Bernal, “The structure of graphite,” Proc. R. Soc. London, Ser. A 106(740), 749–773 (1997).10.1098/rspa.1924.0101
    [4]
    W. Utsumi and T. Yagi, “Light-transparent phase formed by room-temperature compression of graphite,” Science 252(5012), 1542–1544 (1991).10.1126/science.252.5012.1542
    [5]
    W. L. Mao, H. K. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. C. Kao et al., “Bonding changes in compressed superhard graphite,” Science 302(5644), 425–427 (2003).10.1126/science.1089713
    [6]
    Y. Wang, J. E. Panzik, B. Kiefer, and K. K. M. Lee, “Crystal structure of graphite under room-temperature compression and decompression,” Sci. Rep. 2(1), 520 (2012).10.1038/srep00520
    [7]
    F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorfjun, “Man-made diamonds,” Nature 176(4471), 51–55 (1955).10.1038/176051a0
    [8]
    H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, “Preparation of diamond,” Nature 184(4693), 1094–1098 (1959).10.1038/1841094a0
    [9]
    H. Yusa, K. Takemura, Y. Matsui, H. Morishima, K. Watanabe, H. Yamawaki, and K. Aoki, “Direct transformation of graphite to cubic diamond observed in a laser-heated diamond anvil cell,” Appl. Phys. Lett. 72(15), 1843–1845 (1998).10.1063/1.121201
    [10]
    F. P. Bundy and J. S. Kasper, “Hexagonal diamond—A new form of carbon,” J. Chem. Phys. 46(9), 3437–3446 (1967).10.1063/1.1841236
    [11]
    R. Z. Khaliullin, H. Eshet, T. D. Kühne, J. Behler, and M. Parrinello, “Nucleation mechanism for the direct graphite-to-diamond phase transition,” Nat. Mater. 10(9), 693–697 (2011).10.1038/nmat3078
    [12]
    H. Xie, F. Yin, T. Yu, J.-T. Wang, and C. Liang, “Mechanism for direct graphite-to-diamond phase transition,” Sci. Rep. 4(1), 5930 (2014).10.1038/srep05930
    [13]
    S. L. Fahy, S. G. Cohen, and L. Marvin, Phys. Rev. B 35(14), 7623–7626 (1987).10.1103/PhysRevB.35.7623
    [14]
    Y. X. Zhao and I. L. Spain, “X-ray diffraction data for graphite to 20 GPa,” Phys. Rev. B 40(2), 993–997 (1989).10.1103/PhysRevB.40.993
    [15]
    A. F. Goncharov, I. N. Makarenko, and S. M. Stishov, “Graphite at pressures up to 55 GPa: Optical properties and Raman spectra,” High Pressure Res. 4(1–6), 345–347 (1990).10.1080/08957959008246117
    [16]
    T. Yagi, W. Utsumi, M.-a. Yamakata, T. Kikegawa, and O. Shimomura, “High-pressure in situ x-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature,” Phys. Rev. B 46(10), 6031–6039 (1992).10.1103/PhysRevB.46.6031
    [17]
    J. T. Wang, C. Chen, and Y. Kawazoe, “Low-temperature phase transformation from graphite to orthorhombic carbon,” Phys. Rev. Lett. 106(7), 075501 (2011).10.1103/PhysRevLett.106.075501
    [18]
    K. Luo, B. Liu, W. Hu, X. Dong, Y. Wang, Q. Huang et al., “Coherent interfaces govern direct transformation from graphite to diamond,” Nature 607(7919), 486–491 (2022).10.1038/s41586-022-04863-2
    [19]
    S. C. Zhu, X. Z. Yan, J. Liu, A. R. Oganov, and Q. Zhu, “A revisited mechanism of the graphite-to-diamond transition at high temperature,” Matter 3(3), 864–878 (2020).10.1016/j.matt.2020.05.013
    [20]
    H. Sumiya, T. Irifune, A. Kurio, S. Sakamoto, and T. Inoue, “Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure,” J. Mater. Sci. 39(2), 445–450 (2004).10.1023/b:Jmsc.0000011496.15996.44
    [21]
    H. Ohfuji, S. Okimoto, T. Kunimoto, F. Isobe, H. Sumiya, K. Komatsu, and T. Irifune, “Influence of graphite crystallinity on the microtexture of nano-polycrystalline diamond obtained by direct conversion,” Phys. Chem. Miner. 39(7), 543–552 (2012).10.1007/s00269-012-0510-3
    [22]
    F. Isobe, H. Ohfuji, H. Sumiya, and T. Irifune, “Nanolayered diamond sintered compact obtained by direct conversion from highly oriented graphite under high pressure and high temperature,” J. Nanomater. 2013, 1–6.10.1155/2013/380165
    [23]
    F. P. Bundy, “Direct conversion of graphite to diamond in static pressure apparatus,” J. Chem. Phys. 38(3), 631–643 (1963).10.1063/1.1733716
    [24]
    X. Yuan, Y. Cheng, H. Tang, P. Wang, F. Liu, S. Han et al., “sp2-to-sp3 transitions in graphite during cold-compression,” Phys. Chem. Chem. Phys. 24(17), 10561–10566 (2022).10.1039/d2cp00178k
    [25]
    H. K. Mao, J. Xu, and P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res.: Solid Earth 91(B5), 4673–4676, (1986).10.1029/JB091iB05p04673
    [26]
    D. Krishnamurti, “The Raman spectrum of diamond,” Proc. Indian Acad. Sci. - Sect. A 40(5), 211–216 (1954).10.1007/BF03047399
    [27]
    V. Kvasnytsya and R. Wirth, “Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study,” Diamond Relat. Mater. 32, 7–16 (2013).10.1016/j.diamond.2012.11.010
    [28]
    F. Ke, Y. Chen, K. Yin, J. Yan, H. Zhang, Z. Liu et al., “Large bandgap of pressurized trilayer graphene,” Proc. Natl. Acad. Sci. U. S. A. 116(19), 9186–9190 (2019).10.1073/pnas.1820890116
    [29]
    M. Hanfland, H. Beister, and K. Syassen, “Graphite under pressure: Equation of state and first-order Raman modes,” Phys. Rev. B 39(17), 12598–12603 (1989).10.1103/PhysRevB.39.12598
    [30]
    L. G. P. Martins, M. J. S. Matos, A. R. Paschoal, P. T. C. Freire, N. F. Andrade, A. L. Aguiar et al., “Raman evidence for pressure-induced formation of diamondene,” Nat. Commun. 8(1), 96 (2017).10.1038/s41467-017-00149-8
    [31]
    H. Ohfuji, T. Irifune, K. D. Litasov, T. Yamashita, F. Isobe, V. P. Afanasiev, and N. P. Pokhilenko, “Natural occurrence of pure nano-polycrystalline diamond from impact crater,” Sci. Rep. 5, 014702 (2015).10.1038/srep14702
    [32]
    J. P. Pinceaux, J. P. Maury, and J. M. Besson, “Solidification of helium, at room temperature under high pressure,” J. Phys. Lett. 40(13), 307–308 (1979).10.1051/jphyslet:019790040013030700
    [33]
    X. Yin, Z. Kou, Z. Wang, T. Liu, A. Liang, M. Yang et al., “Micro-sized polycrystalline cubic boron nitride with properties comparable to nanocrystalline counterparts,” Ceram. Int. 46(7), 8806–8810 (2020).10.1016/j.ceramint.2019.12.120
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (24) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return