Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
Peng Yuan-Ao, Wang Han-Yu, Su Fu-Hai, Wang Pu, Xu Hai-An, Liu Lin, Yu Lun-Xuan, Howie Ross T., Xu Wan, Gregoryanz Eugene, Liu Xiao-Di. Synthesis of lutetium hydrides at high pressures[J]. Matter and Radiation at Extremes, 2025, 10(1): 017804. doi: 10.1063/5.0227283
Citation: Peng Yuan-Ao, Wang Han-Yu, Su Fu-Hai, Wang Pu, Xu Hai-An, Liu Lin, Yu Lun-Xuan, Howie Ross T., Xu Wan, Gregoryanz Eugene, Liu Xiao-Di. Synthesis of lutetium hydrides at high pressures[J]. Matter and Radiation at Extremes, 2025, 10(1): 017804. doi: 10.1063/5.0227283

Synthesis of lutetium hydrides at high pressures

doi: 10.1063/5.0227283
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: xuwan@issp.ac.cn; e.gregoryanz@ed.ac.uk; and xiaodi@issp.ac.cn
  • Received Date: 2024-07-08
  • Accepted Date: 2024-11-12
  • Available Online: 2025-01-01
  • Publish Date: 2025-01-02
  • High-pressure synthesis of lutetium hydrides from molecular hydrogen (H2) and lutetium (Lu) is systematically investigated using synchrotron X-ray diffraction, Raman spectroscopy, and visual observations. We demonstrate that the reaction pathway between H2 and Lu invariably follows the sequence Lu ⟶ LuH2 ⟶ LuH3 and exhibits a notable time dependence. A comprehensive diagram representing the formation and synthesis of lutetium hydrides as a function of pressure and time is constructed. Our findings indicate that the synthesis can be accelerated by elevated temperature and decelerated by increased pressure. Notably, two critical pressure thresholds at ambient temperature are identified: the synthesis of LuH2 from Lu commences at a minimum pressure of ∼3 GPa, while ∼28 GPa is the minimum pressure at which LuH2 fails to transform into LuH3 within a time scale of months. This underscores the significant impact of temporal factors on synthesis, with the reaction completion time increasing sub-linearly with rising pressure. Furthermore, the cubic phase of LuH3 can be obtained exclusively through compressing the trigonal LuH3 phase at ∼11.5 GPa. We also demonstrate that the bandgap of LuH3 slowly closes under pressure and is noticeably lower than that of LuH2.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Yuan-Ao Peng: Data curation (equal). Han-Yu Wang: Data curation (equal). Fu-Hai Su: Data curation (equal). Pu Wang: Data curation (equal). Hai-An Xu: Data curation (equal). Lin Liu: Data curation (equal). Lun-Xuan Yu: Data curation (equal). Ross T. Howie: Data curation (equal). Wan Xu: Data curation (equal); Formal analysis (equal); Writing – original draft (equal); Writing – review & editing (equal). Eugene Gregoryanz: Writing – review & editing (equal). Xiao-Di Liu: Conceptualization (equal); Formal analysis (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available within the article and its supplementary material and from the corresponding authors upon reasonable request.
  • loading
  • [1]
    T. Palasyuk and M. Tkacz, “Pressure-induced structural phase transition in rare-earth trihydrides. Part I. (GdH3, HoH3, LuH3),” Solid State Commun. 133, 481–486 (2005).10.1016/j.ssc.2004.11.036
    [2]
    T. Palasyuk and M. Tkacz, “Pressure-induced structural phase transition in rare-earth trihydrides. Part II. SmH3 and compressibility systematics,” Solid State Commun. 141, 302–305 (2007).10.1016/j.ssc.2006.06.045
    [3]
    T. Palasyuk and M. Tkacz, “Pressure-induced structural phase transition in rare-earth trihydrides. Part III. Systematics: General and geometric approach,” Solid State Commun. 141, 354–358 (2007).10.1016/j.ssc.2006.10.004
    [4]
    C. E. Holley, R. N. R. Mulford, F. H. Ellinger, W. C. Koehier, and W. H. Zachariasen, “The crystal structure of some rare earth hydrides,” J. Phys. Chem. 59, 1226–1228 (2002).10.1021/j150534a010
    [5]
    I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy et al., “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33, e2006832 (2021).10.1002/adma.202006832
    [6]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
    [7]
    N. P. Salke, M. M. Davari Esfahani, Y. Zhang, I. A. Kruglov, J. Zhou et al., “Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice,” Nat. Commun. 10, 4453 (2019).10.1038/s41467-019-12326-y
    [8]
    P. Tsuppayakorn-aek, U. Pinsook, W. Luo, R. Ahuja, and T. Bovornratanaraks, “Superconductivity of superhydride CeH10 under high pressure,” Mater. Res. Express 7, 086001 (2020).10.1088/2053-1591/ababc2
    [9]
    R. Griessen, J. N. Huiberts, M. Kremers, A. T. M. van Gogh, N. J. Koeman et al., “Yttrium and lanthanum hydride films with switchable optical properties,” J. Alloys Compd. 253–254, 44–50 (1997).10.1016/s0925-8388(96)02891-5
    [10]
    Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang et al., “Pressure-stabilized superconductive yttrium hydrides,” Sci. Rep. 5, 9948 (2015).10.1038/srep09948
    [11]
    P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
    [12]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8
    [13]
    W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li et al., “High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar,” Phys. Rev. Lett. 127, 117001 (2021).10.1103/physrevlett.127.117001
    [14]
    N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee et al., “Retracted article: Evidence of near-ambient superconductivity in a N-doped lutetium hydride,” Nature 615, 244–250 (2023).10.1038/s41586-023-05742-0
    [15]
    X. Ming, Y. J. Zhang, X. Zhu, Q. Li, C. He et al., “Absence of near-ambient superconductivity in LuH(2+/−x)Ny,” Nature 620, 72 (2023).10.1038/s41586-023-06162-w
    [16]
    X. Xing, C. Wang, L. Yu, J. Xu, C. Zhang et al., “Observation of non-superconducting phase changes in nitrogen doped lutetium hydrides,” Nat. Commun. 14, 5991 (2023).10.1038/s41467-023-41777-7
    [17]
    D. Peng, Q. Zeng, F. Lan, Z. Xing, Y. Ding et al., “The near-room-temperature upsurge of electrical resistivity in Lu–H–N is not superconductivity, but a metal-to-poor-conductor transition,” Matter Radiat. Extremes 8, 058401 (2023).10.1063/5.0166430
    [18]
    F. Xie, T. Lu, Z. Yu, Y. Wang, Z. Wang et al., “Lu–H–N phase diagram from first-principles calculations,” Chin. Phys. Lett. 40, 057401 (2023).10.1088/0256-307x/40/5/057401
    [19]
    M. Liu, X. Liu, J. Li, J. Liu, Y. Sun et al., “Parent structures of near-ambient nitrogen-doped lutetium hydride superconductor,” Phys. Rev. B 108, L020102 (2023).10.1103/physrevb.108.l020102
    [20]
    Y. Sun, F. Zhang, S. Wu, V. Antropov, and K. M. Ho, “Effect of nitrogen doping and pressure on the stability of LuH3,” Phys. Rev. B 108, L020101 (2023).10.1103/physrevb.108.l020101
    [21]
    Z. Huo, D. Duan, T. Ma, Z. Zhang, Q. Jiang et al., “First-principles study on the conventional superconductivity of N-doped fcc-LuH3,” Matter Radiat. Extremes 8, 038402 (2023).10.1063/5.0151844
    [22]
    W. Wu, Z. Zeng, and X. Wang, “Investigations of pressurized Lu–N–H materials by using the hybrid functional,” J. Phys. Chem. C 127, 20121–20127 (2023).10.1021/acs.jpcc.3c04454
    [23]
    S. W. Kim, L. J. Conway, C. J. Pickard, G. L. Pascut, and B. Monserrat, “Microscopic theory of colour in lutetium hydride,” Nat. Commun. 14, 7360 (2023).10.1038/s41467-023-42983-z
    [24]
    K. P. Hilleke, X. Y. Wang, D. B. Luo, N. S. Geng, B. S. Wang et al., “Structure, stability, and superconductivity of N-doped lutetium hydrides at kbar pressures,” Phys. Rev. B 108, 014511 (2023).10.1103/physrevb.108.014511
    [25]
    J. Du, W. Sun, X. Li, and F. Peng, “Pressure-induced stability and superconductivity in LuH12 polyhydrides,” Phys. Chem. Chem. Phys. 25, 13320–13324 (2023).10.1039/d3cp00604b
    [26]
    D. Dangić, P. Garcia-Goiricelaya, Y.-W. Fang, J. Ibañez Azpiroz, and I. Errea, “Ab initio study of the structural, vibrational, and optical properties of potential parent structures of nitrogen-doped lutetium hydride,” Phys. Rev. B 108, 064517 (2023).10.1103/physrevb.108.064517
    [27]
    A. Denchfield, F. Belli, E. Zurek, H. Park, and R. J. Hemley, “Quantum stabilization and flat hydrogen-based bands of nitrogen-doped lutetium hydride,” Phys. Rev. B 110, 174110 (2024).10.1103/physrevb.110.174110
    [28]
    Y.-W. Fang, D. Dangić, and I. Errea, “Assessing the feasibility of near-ambient conditions superconductivity in the Lu–N–H system,” Commun. Mater. 5, 61 (2024).10.1038/s43246-024-00500-9
    [29]
    R. Lv, W. Tu, D. Shao, Y. Sun, and W. Lu, “Physical origin of color changes in lutetium hydride under pressure,” Chin. Phys. Lett. 40, 117401 (2023).10.1088/0256-307x/40/11/117401
    [30]
    N. S. Pavlov, I. R. Shein, K. S. Pervakov, V. M. Pudalov, and I. A. Nekrasov, “Anatomy of the band structure of the newest apparent near-ambient superconductor LuH3−xNx,” JETP Lett. 118, 693–699 (2023).10.1134/s0021364023603172
    [31]
    [32]
    R. Lucrezi, P. P. Ferreira, M. Aichhorn, and C. Heil, “Temperature and quantum anharmonic lattice effects on stability and superconductivity in lutetium trihydride,” Nat. Commun. 15, 441 (2024).10.1038/s41467-023-44326-4
    [33]
    C. Tresca, P. M. Forcella, A. Angeletti, L. Ranalli, C. Franchini et al., “Molecular hydrogen in the N-doped LuH3 system as a possible path to superconductivity,” Nat. Commun. 15, 7283 (2024).10.1038/s41467-024-51348-z
    [34]
    X. Tao, A. Yang, S. Yang, Y. Quan, and P. Zhang, “Leading components and pressure-induced color changes in N-doped lutetium hydride,” Sci. Bull. 68, 1372–1378 (2023).10.1016/j.scib.2023.06.007
    [35]
    B. Li, Y. Q. Yang, Y. X. Fan, C. Zhu, S. L. Liu et al., “Theoretical predictions on superconducting phase above room temperature in lutetium-beryllium hydrides at high pressures,” Chin. Phys. Lett. 40, 097402 (2023).10.1088/0256-307x/40/9/097402
    [36]
    P. P. Ferreira, L. J. Conway, A. Cucciari, S. Di Cataldo, F. Giannessi et al., “Search for ambient superconductivity in the Lu–N–H system,” Nat. Commun. 14, 5367 (2023).10.1038/s41467-023-41005-2
    [37]
    S. Cai, J. Guo, H. Y. Shu, L. X. Yang, P. Y. Wang et al., “No evidence of superconductivity in a compressed sample prepared from lutetium foil and H2/N2 gas mixture,” Matter Radiat. Extremes 8, 048001 (2023).10.1063/5.0153447
    [38]
    Y. J. Zhang, X. Ming, Q. Li, X. Zhu, B. Zheng et al., “Pressure induced color change and evolution of metallic behavior in nitrogen-doped lutetium hydride,” Sci. China: Phys., Mech. Astron. 66, 287411 (2023).10.1007/s11433-023-2109-4
    [39]
    X. Zhao, P. Shan, N. Wang, Y. Li, Y. Xu et al., “Pressure tuning of optical reflectivity in LuH2,” Sci. Bull. 68, 883–886 (2023).10.1016/j.scib.2023.04.009
    [40]
    X. P. Ma, N. N. Wang, W. T. Wang, J. Z. Nie, W. L. Gao et al., “Microstructure and structural modulation of lutetium dihydride LuH2 as seen via transmission electron microscopy,” Scr. Mater. 245, 116022 (2024).10.1016/j.scriptamat.2024.116022
    [41]
    J. Guo, S. Cai, D. Wang, H. Shu, L. Yang et al., “Robust magnetism against pressure in non-superconducting samples prepared from lutetium foil and H2/N2 gas mixture,” Chin. Phys. Lett. 40, 097401 (2023).10.1088/0256-307x/40/9/097401
    [42]
    D. Wang, N. N. Wang, C. S. Zhang, C. S. Xia, W. C. Guo et al., “Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides,” Matter Radiat. Extremes 9, 037401 (2024).10.1063/5.0183701
    [43]
    X. Li, Y. Wang, Y. Fu, S. A. T. Redfern, S. Jiang et al., “Stabilization of high-pressure phase of face-centered cubic lutetium trihydride at ambient conditions,” Adv. Sci. 11, e2401642 (2024).10.1002/advs.202401642
    [44]
    D. Peng, Q. S. Zeng, F. J. Lan, Z. F. Xing, Z. D. Zeng et al., “Origin of the near-room temperature resistance transition in lutetium with H2/N2 gas mixture under high pressure,” Natl. Sci. Rev. 11, nwad337 (2023).10.1093/nsr/nwad337
    [45]
    P. Li, J. Bi, S. Zhang, R. Cai, G. Su et al., “Transformation of hexagonal Lu to cubic LuH2+x single-crystalline films,” Chin. Phys. Lett. 40, 087401 (2023).10.1088/0256-307x/40/8/087401
    [46]
    M. Shao, S. Chen, W. Chen, K. Zhang, X. Huang et al., “Superconducting ScH3 and LuH3 at megabar pressures,” Inorg. Chem. 60, 15330–15335 (2021).10.1021/acs.inorgchem.1c01960
    [47]
    O. Moulding, S. Gallego Parra, Y. Gao, P. Toulemonde, G. Garbarino et al., “Pressure-induced formation of cubic lutetium hydrides derived from trigonal LuH3,” Phys. Rev. B 108, 214505 (2023).10.1103/physrevb.108.214505
    [48]
    T. Scheler, M. Marques, Z. Konopkova, C. L. Guillaume, R. T. Howie et al., “High-pressure synthesis and characterization of iridium trihydride,” Phys. Rev. Lett. 111, 215503 (2013).10.1103/physrevlett.111.215503
    [49]
    R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharov, and E. Gregoryanz, “Mixed molecular and atomic phase of dense hydrogen,” Phys. Rev. Lett. 108, 125501 (2012).10.1103/physrevlett.108.125501
    [50]
    N. Hirao, S. I. Kawaguchi, K. Hirose, K. Shimizu, E. Ohtani et al., “New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8,” Matter Radiat. Extremes 5, 018403 (2020).10.1063/1.5126038
    [51]
    B. H. Toby and R. B. Von Dreele, “GSAS-II: The genesis of a modern open-source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544–549 (2013).10.1107/s0021889813003531
    [52]
    V. Petříček, L. Palatinus, J. Plášil, and M. Dušek, “JANA2020—A new version of the crystallographic computing system JANA,” Z. Kristallogr. Cryst. Mater. 238, 271–282 (2023).10.1515/zkri-2023-0005
    [53]
    B. Kong, L. Zhang, X. R. Chen, T. X. Zeng, and L. C. Cai, “Structural relative stabilities and pressure-induced phase transitions for lanthanide trihydrides REH3 (RE = Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu),” Physica B 407, 2050–2057 (2012).10.1016/j.physb.2012.02.003
    [54]
    H. Meng, T. Palasyuk, V. Drozd, and M. Tkacz, “Study of phase stability and isotope effect in dysprosium trihydride at high pressure,” J. Alloys Compd. 722, 946–952 (2017).10.1016/j.jallcom.2017.06.181
    [55]
    C. Prescher and V. B. Prakapenka, “DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration,” High Pressure Res. 35, 223–230 (2015).10.1080/08957959.2015.1059835
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (47) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return