Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
Limpouch J., Tikhonchuk V., Renner O., Agarwal Sh., Burian T., Červenka J., Dostál J., Dudžák R., Ettel D., Gintrand A., Hudec L., Juha L., Klimo O., Krupka M., Krus M., Lastovicka T., Liska R., Nazarov W., Singh S. K., Šilhavík M., Weber S.. Laser interaction with undercritical foams of different spatial structures[J]. Matter and Radiation at Extremes, 2025, 10(1): 017402. doi: 10.1063/5.0225997
Citation: Limpouch J., Tikhonchuk V., Renner O., Agarwal Sh., Burian T., Červenka J., Dostál J., Dudžák R., Ettel D., Gintrand A., Hudec L., Juha L., Klimo O., Krupka M., Krus M., Lastovicka T., Liska R., Nazarov W., Singh S. K., Šilhavík M., Weber S.. Laser interaction with undercritical foams of different spatial structures[J]. Matter and Radiation at Extremes, 2025, 10(1): 017402. doi: 10.1063/5.0225997

Laser interaction with undercritical foams of different spatial structures

doi: 10.1063/5.0225997
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jiri.limpouch@fjfi.cvut.cz
  • Received Date: 2024-06-28
  • Accepted Date: 2024-11-03
  • Available Online: 2025-01-01
  • Publish Date: 2025-01-02
  • The interaction of high-power laser pulses with undercritical foams produced by different techniques but with the same average density is studied at the PALS laser facility. The spatial–temporal evolution of X-ray emission is observed using an X-ray streak camera, electron and ion temperatures are measured by X-ray spectroscopy, and hot-electron production is characterized by monochromatic X-ray imaging. Transmission of a femtosecond laser probe pulse through foams is observed in the near and far fields. In spite of large differences in pore size and foam structure, the velocity of ionization front propagation is quite similar for all the foams studied and is slower than that in a homogeneous material of the same average density. The ion temperature in the plasma behind the ionization front is a few times higher than the electron temperature. Hot-electron production in plastic foams with small pores is strongly suppressed compared with that in solid targets, whereas in foams produced by additive manufacturing, it is significantly increased to the level observed in bare copper foil targets.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    J. Limpouch: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Supervision (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). V. Tikhonchuk: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Supervision (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). O. Renner: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal); Writing – original draft (supporting); Writing – review & editing (supporting). Sh. Agarwal: Investigation (supporting); Validation (supporting). T. Burian: Investigation (equal); Validation (equal). J. Červenka: Investigation (supporting); Resources (equal); Supervision (equal); Validation (equal). J. Dostál: Investigation (equal); Validation (equal). R. Dudžák: Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal). D. Ettel: Investigation (equal); Validation (equal). A. Gintrand: Investigation (supporting); Validation (equal). L. Hudec: Formal analysis (equal); Investigation (equal); Methodology (supporting); Validation (equal); Visualization (equal); Writing – original draft (supporting); Writing – review & editing (supporting). L. Juha: Funding acquisition (equal); Investigation (supporting); Validation (equal). O. Klimo: Investigation (supporting); Supervision (equal); Validation (equal). M. Krupka: Investigation (equal); Validation (equal). M. Krus: Funding acquisition (equal); Investigation (supporting); Validation (equal). T. Lastovicka: Investigation (equal); Resources (equal); Validation (equal); Visualization (equal); Writing – original draft (supporting); Writing – review & editing (supporting). R. Liska: Investigation (supporting); Supervision (equal); Validation (equal). W. Nazarov: Investigation (supporting); Resources (equal); Validation (equal). S. K. Singh: Investigation (equal); Validation (equal). M. Šilhavík: Investigation (supporting); Resources (equal); Validation (equal). S. Weber: Funding acquisition (equal); Investigation (supporting); Supervision (equal); Validation (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    F. Perez, J. D. Colvin, M. J. May, S. Charnvanichborikarn, S. O. Kucheyev et al., “High-power laser interaction with low-density C–Cu foams,” Phys. Plasmas 22, 113112 (2015).10.1063/1.4935911
    [2]
    M. M. Günther, O. N. Rosmej, P. Tavana, M. Gyrdymov, A. Skobliakov et al., “Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science,” Nat. Commun. 13, 170 (2022).10.1038/s41467-021-27694-7
    [3]
    B. Delorme, M. Olazabal-Loumé, A. Casner, P. Nicolaï, D. T. Michel et al., “Experimental demonstration of laser imprint reduction using underdense foams,” Phys. Plasmas 23, 042701 (2016).10.1063/1.4945619
    [4]
    V. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine et al., “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype,” Matter Radiat. Extremes 6, 025902 (2021).10.1063/5.0023006
    [5]
    K. Nagai, C. S. A. Musgrave, and W. Nazarov, “A review of low density porous materials used in laser plasma experiments,” Phys. Plasmas 25, 030501 (2018).10.1063/1.5009689
    [6]
    S. Yu, Q. Du, C. R. Mendonca, L. Ranno, T. Gu et al., “Two-photon lithography for integrated photonic packaging,” Light: Adv. Manuf. 4, 32 (2023).10.37188/lam.2023.032
    [7]
    V. Tikhonchuk and S. Weber, “Physics of porous materials under extreme laser-generated conditions,” Matter Radiat. Extremes 9, 033001 (2024).10.1063/5.0169446
    [8]
    T. Wiste, O. Maliuk, V. Tikhonchuk, T. Lastovicka, J. Homola et al., “Additive manufactured foam targets for experiments on high-power laser-matter interaction,” J. Appl. Phys. 133, 043101 (2023).10.1063/5.0121650
    [9]
    A. Forsman, M. Do, A. Haid, L. Keaty, M. J.-E. Manuel et al., “High repetition-rate foam targetry for laser–plasma interaction experiments: Concept and preliminary results,” Rev. Sci. Instrum. 95, 063505 (2024).10.1063/5.0197995
    [10]
    J. L. Milovich, O. S. Jones, R. L. Berger, G. E. Kemp, J. S. Oakdale et al., “Simulation studies of the interaction of laser radiation with additively manufactured foams,” Plasma Phys. Control. Fusion 63, 055009 (2021).10.1088/1361-6587/abe353
    [11]
    O. S. Jones, G. E. Kemp, S. H. Langer, B. J. Winjum, R. L. Berger et al., “Experimental and calculational investigation of laser-heated additive manufactured foams,” Phys. Plasmas 28, 022709 (2021).10.1063/5.0032023
    [12]
    L. Hudec, A. Gintrand, J. Limpouch, R. Liska, S. Shekhanov et al., “Hybrid ablation–expansion model for laser interaction with low-density foams,” Phys. Plasmas 30, 042704 (2023).10.1063/5.0139488
    [13]
    K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa et al., “The Prague Asterix laser system,” Phys. Plasmas 8, 2495 (2001).10.1063/1.1350569
    [14]
    [15]
    J. Limpouch, O. Renner, N. Borisenko, D. Klir, V. Kmetik et al., “Applications of low-density foams for X-ray source studies and laser beam smoothing,” J. Phys.: Conf. Ser. 112, 042056 (2008).10.1088/1742-6596/112/4/042056
    [16]
    J. Limpouch, V. T. Tikhonchuk, J. Dostal, R. Dudzak, M. Krupka et al., “Characterization of residual inhomogeneities in a plasma created by laser ionization of a low-density foam,” Plasma Phys. Control. Fusion 62, 035013 (2020).10.1088/1361-6587/ab6b4d
    [17]
    M. Šilhavík, P. Kumar, Z. A. Zafar, M. Míšek, M. Čičala et al., “Anomalous elasticity and damping in covalently cross-linked graphene aerogels,” Commun. Phys. 5, 27 (2022).10.1038/s42005-022-00806-5
    [18]
    J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali et al., “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 17, 1702425 (2017).10.1002/adfm.201702425
    [19]
    O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extremes 4, 024201 (2019).10.1063/1.5086344
    [20]
    Y. Dong, Z. Zhang, M. Xu, Y. Du, C. Zhang et al., “Absolute x-ray calibration of an Amersham imaging plate scanner,” Rev. Sci. Instrum. 91, 033105 (2020).10.1063/1.5140026
    [21]
    S. Podorov, O. Renner, O. Wehrhan, and E. Förster, “Optimized polychromatic x-ray imaging with asymmetrically cut bent crystals,” J. Phys. D: Appl. Phys. 34, 2363 (2001).10.1088/0022-3727/34/15/317
    [22]
    V. V. Gavrilov, A. Y. Gol’tsov, N. G. Koval’skii, S. N. Koptyaev, A. I. Magunov et al., “X-ray spectral measurement of high-temperature plasma parameters in porous targets irradiated with high-power laser pulses,” Quantum Electron. 31, 1071 (2001).10.1070/qe2001v031n12abeh002104
    [23]
    H.-K. Chung, M. Chen, W. Morgan, Y. Ralchenko, and R. Lee, “Flychk: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3 (2005).10.1016/j.hedp.2005.07.001
    [24]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).10.1016/s0168-9002(03)01368-8
    [25]
    [26]
    O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Control. Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
    [27]
    J. A. Koch, K. G. Estabrook, J. D. Bauer, C. A. Back, L. Klein et al., “Time-resolved x-ray imaging of high-power laser-irradiated underdense silica aerogels and agar foams,” Phys. Plasmas 2, 3820 (1995).10.1063/1.871081
    [28]
    P. Tzeferacos, M. Fatenejad, N. Flocke, C. Graziani, G. Gregori et al., “FLASH MHD simulations of experiments that study shock-generated magnetic fields,” High Energy Density Phys. 17, 24 (2015).10.1016/j.hedp.2014.11.003
    [29]
    J. Denavit and D. W. Phillion, “Laser ionization and heating of gas targets for long-scale-length instability experiments,” Phys. Plasmas 1, 1971 (1994).10.1063/1.870653
    [30]
    S. Y. Gus’kov, J. Limpouch, P. Nicolaï, and V. T. Tikhonchuk, “Laser-supported ionization wave in under-dense gases and foams,” Phys. Plasmas 18, 103114 (2011).10.1063/1.3642615
    [31]
    S. Depierreux, C. Labaune, D. T. Michel, C. Stenz, P. Nicolaï et al., “Laser smoothing and imprint reduction with a foam layer in the multikilojoule regime,” Phys. Rev. Lett. 102, 195005 (2009).10.1103/physrevlett.102.195005
    [32]
    E. J. Yadlowsky, F. Barakat, E. P. Carlson, R. C. Hazelton, M. Keitz et al., “High repetition-rate foam targetry for laser–plasma interaction experiments: Concept and preliminary results,” J. Appl. Phys. 92, 3458 (2002).10.1063/1.1505671
    [33]
    D. A. Mariscal, O. S. Jones, R. L. Berger, S. Patankar, K. L. Baker et al., “Laser transport and backscatter in low-density SiO2 and Ta2O5 foams,” Phys. Plasmas 28, 013006 (2021).10.1063/5.0025639
    [34]
    V. Tikhonchuk, Particle Kinetics and Laser Plasma Interactions (Cambridge Scholar Publishing, 2024).
    [35]
    H. C. van der Hulst, Light Scattering by Small Particles (Dover Publishing, 1957).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (22) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return