Citation: | Wang Xiangbing, Chai Xiangxu, Li Ping, Zhang Bo, Zhu Qihua, Tian Xiaocheng, Wang Ju, Zong Zhaoyu, Zhou Song, Yao Ke, Li Sen, Zhao Junpu, Peng Zhitao. Ultraviolet spectral broadening by stimulated rotational Raman scattering on nitrogen pumped with signal laser injection[J]. Matter and Radiation at Extremes, 2025, 10(1): 017401. doi: 10.1063/5.0220473 |
[1] |
G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: Enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004).10.1088/0029-5515/44/12/s14
|
[2] |
H. Abu-Shawareb et al., “Achievement of target gain larger than unity in an inertial fusion experiment,” Phys. Rev. Lett. 132, 065102 (2024).10.1103/physrevlett.132.065102
|
[3] |
D. E. Hinkel, L. F. Berzak Hopkins, T. Ma, J. E. Ralph, F. Albert et al., “Development of improved radiation drive environment for high foot implosions at the National Ignition Facility,” Phys. Rev. Lett. 117, 225002 (2016).10.1103/physrevlett.117.225002
|
[4] |
T. Gong, L. Hao, Z. Li, D. Yang, S. Li et al., “Recent research progress of laser plasma interactions in Shenguang laser facilities,” Matter Radiat. Extremes 4, 055202 (2019).10.1063/1.5092446
|
[5] |
R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula et al., “Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers,” Phys. Plasmas 28, 032103 (2021).10.1063/5.0037869
|
[6] |
J. W. Bates, R. K. Follett, J. G. Shaw, S. P. Obenschain, J. F. Myatt et al., “Suppressing parametric instabilities in direct-drive inertial-confinement-fusion plasmas using broadband laser light,” Phys. Plasmas 30, 052703 (2023).10.1063/5.0150865
|
[7] |
A. Lei, N. Kang, Y. Zhao, H. Liu, H. An et al., “Reduction of backward scatterings at the low-coherence Kunwu laser facility,” Phys. Rev. Lett. 132, 035102 (2024).10.1103/physrevlett.132.035102
|
[8] |
P. J. Wegner, J. M. Auerbach, T. A. Biesiada, Jr., S. N. Dixit, J. K. Lawson et al., “NIF final optics system: Frequency conversion and beam conditioning,” Proc. SPIE 5341, 180 (2004).10.1117/12.538481
|
[9] |
G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and wavelength dependence of the rotational Raman gain coefficient in N2,” Opt. Lett. 11, 348–350 (1986).10.1364/ol.11.000348
|
[10] |
M. Rokni and A. Flusberg, “Stimulated rotational Raman scattering in the atmosphere,” IEEE J. Quantum Electron. 22, 1102–1108 (1986).10.1109/jqe.1986.1073083
|
[11] |
D. Eimerl, D. Milam, and J. Yu, “Large bandwidth frequency-converted Nd:glass laser at 527 nm with Δν/ν=2%,” Phys. Rev. Lett. 70, 2738–2741 (1993).10.1103/physrevlett.70.2738
|
[12] |
W. Huang, Z. Li, Y. Cui, Z. Zhou, and Z. Wang, “Efficient, watt-level, tunable 1.7 µm fiber Raman laser in H2-filled hollow-core fibers,” Opt. Lett. 45, 475–478 (2020).10.1364/ol.378496
|
[13] |
A. I. Adamu, Y. Wang, M. S. Habib, M. K. Dasa, J. E. Antonio-Lopez et al., “Multi-wavelength high-energy gas-filled fiber Raman laser spanning from 1.53 µm to 2.4 µm,” Opt. Lett. 46, 452–455 (2021).10.1364/ol.411003
|
[14] |
A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562–565 (2000).10.1103/physrevlett.85.562
|
[15] |
E. Takahashi, L. L. Losev, T. Tabuchi, Y. Matsumoto, S. Kato et al., “Generation of 30 pure rotational Raman sidebands using two-color pumping of D2 gas by KrF laser,” Opt. Commun. 257, 133–138 (2006).10.1016/j.optcom.2005.07.035
|
[16] |
J. Takahashi, Y. Kawabe, and E. Hanamura, “Generation of a broadband spectral comb with multiwave mixing by exchange of an impulsively stimulated phonon,” Opt. Express 12, 1185–1191 (2004).10.1364/opex.12.001185
|
[17] |
E. Takahashi, S. Kato, Y. Matsumoto, and L. L. Losev, “Ultra broadband UV generation by stimulated Raman scattering of two-color KrF laser in deuterium confined in a hollow fiber,” Opt. Express 15, 2535–2540 (2007).10.1364/oe.15.002535
|
[18] |
Y. Cui, Y. Gao, D. Rao, D. Liu, F. Li et al., “High-energy low-temporal-coherence instantaneous broadband pulse system,” Opt. Lett. 44, 2859 (2019).10.1364/ol.44.002859
|
[19] |
Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao et al., “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
|
[20] |
C. Garban-Labaune, E. Fabre, and A. Michard, “Effect of target metarial on absorption measurements at short laser wavelengths,” Opt. Commun. 41, 174–177 (1982).10.1016/0030-4018(82)90065-7
|
[21] |
J. Weaver, R. Lehmberg, S. Obenschain, D. Kehne, and M. Wolford, “Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser,” Appl. Opt. 56, 8618–8631 (2017).10.1364/ao.56.008618
|
[22] |
Y. Lin, T. J. Kessler, and G. N. Lawrence, “Raman scattering in air: Four-dimensional analysis,” Appl. Opt. 33, 4781–4791 (1994).10.1364/ao.33.004781
|
[23] |
S. A. McLaren, S. Schrauth, K. McCandless, J. Penner, R. Aden et al., “Four-dimensional dynamics of multirotational transition stimulated rotational Raman scattering in air,” J. Opt. Soc. Am. B 40, 1800–1806 (2023).10.1364/josab.490088
|
[24] |
A. Flusberg, S. Fulghum, H. Lotem, M. Rokni, and M. Tekula, “Multiseed stimulated rotational Raman scattering for wave-front control,” J. Opt. Soc. Am. B 8, 1851 (1991).10.1364/josab.8.001851
|
[25] |
J. Zhao, W. Wang, X. Fu, J. Tang, Y. Xia et al., “Recent progress of the integration test bed,” Proc. SPIE 9266, 92660X (2014).10.1117/12.2074563
|
[26] |
J. Zhao, Y. Liang, S. Li, Z. Zong, J. Tang et al., “Beam nonuniformity compensating by the programmable spatial shaper for the integration test bed,” Proc. SPIE 11052, 110521R (2019).10.1117/12.2524006
|
[27] |
X. Chai, P. Li, J. Zhao, G. Wang, D. Zhu et al., “Laser-induced damage growth of large-aperture fused silica optics under high-fluence 351 nm laser irradiation,” Optik 226, 165549 (2021).10.1016/j.ijleo.2020.165549
|