Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
Geng Yanlei, Li Jianfu, Zhang Zhaobin, Lv Yang, Lu Mengxin, Zhu Mengyuan, Liu Yong, Yuan Jianan, Hu Qingyang, Wang Xiaoli. Downshift of d-states and the decomposition of silver halides[J]. Matter and Radiation at Extremes, 2024, 9(6): 067804. doi: 10.1063/5.0216221
Citation: Geng Yanlei, Li Jianfu, Zhang Zhaobin, Lv Yang, Lu Mengxin, Zhu Mengyuan, Liu Yong, Yuan Jianan, Hu Qingyang, Wang Xiaoli. Downshift of d-states and the decomposition of silver halides[J]. Matter and Radiation at Extremes, 2024, 9(6): 067804. doi: 10.1063/5.0216221

Downshift of d-states and the decomposition of silver halides

doi: 10.1063/5.0216221
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: jianfuli@ytu.edu.cn and xlwang@ytu.edu.cn
  • Received Date: 2024-04-28
  • Accepted Date: 2024-08-25
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • The ionicity of ionic solids is typically characterized by the electronegativity of the constituent ions. Electronegativity measures the ability of electron transfer between atoms and is commonly considered under ambient conditions. However, external stresses profoundly change the ionicity, and compressed ionic compounds may behave differently. Here, we focus on silver halides, with constituent ions from one of the most electropositive metals and some of the most electronegative nonmetals. Using first-principles calculations, we find that the strengths of the ionic bonds in these compounds change greatly under pressure owing to downshifting of the Ag 4d-orbital. The center of this orbital is lowered to fill the antibonding state below the Fermi level, leading to chemical decomposition. Our results suggest that under pressure, the orbital energies and correspondingly the electronegativities still tune the ionicity and control the electron transfer, ionicity, and reactivity of both the metal and the nonmetal elements. However, the effects of orbital energies start to become dominant under pressure, causing substantial changes to the chemistry of ionic compounds and leading to an unusual phenomenon in which elements with substantial electronegativity differences, such as Ag and Br, do not necessarily form ionic compounds, but remain in their elemental forms.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Yanlei Geng: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). Jianfu Li: Formal analysis (equal); Funding acquisition (equal); Project administration (equal); Validation (equal); Writing – review & editing (equal). Zhaobin Zhang: Formal analysis (equal); Investigation (equal); Validation (equal). Yang Lv: Formal analysis (equal); Investigation (equal); Validation (equal). Mengxin Lu: Formal analysis (equal); Investigation (equal); Validation (equal). Mengyuan Zhu: Formal analysis (equal); Investigation (equal); Validation (equal). Yong Liu: Formal analysis (equal); Investigation (equal); Validation (equal). Jianan Yuan: Formal analysis (equal); Investigation (equal); Validation (equal). Qingyang Hu: Formal analysis (equal); Validation (equal); Writing – review & editing (equal). Xiaoli Wang: Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Methodology (equal); Project administration (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    R. Holmes, “Humphry Davy and the chemical moment,” Clin. Chem. 57, 1625–1631 (2011).10.1373/clinchem.2011.173971
    [2]
    A. Unsöld, Sterne und Menschen (Springer, Berlin, Heidelberg, 1972).
    [3]
    R. P. Iczkowski and J. L. Margrave, “Electronegativity,” J. Am. Chem. Soc. 83, 3547–3551 (1961).10.1021/ja01478a001
    [4]
    R. T. Sanderson, “Electronegativity and bond energy,” J. Am. Chem. Soc. 105, 2259–2261 (1983).10.1021/ja00346a026
    [5]
    K. Li, X. Wang, F. Zhang, and D. Xue, “Electronegativity identification of novel superhard materials,” Phys. Rev. Lett. 100, 235504 (2008).10.1103/physrevlett.100.235504
    [6]
    K. A. Moltved and K. P. Kepp, “The chemical bond between transition metals and oxygen: Electronegativity, d-orbital effects, and oxophilicity as descriptors of metal–oxygen interactions,” J. Phys. Chem. C 123, 18432–18444 (2019).10.1021/acs.jpcc.9b04317
    [7]
    B. Xiong et al., “Tailoring the electronic structure of ZnCo2O4 by incorporating anions with low electronegativity to improve the water oxidation activity,” Sci. China Mater. 66, 1793–1800 (2023).10.1007/s40843-022-2335-1
    [8]
    A. Jog, E. Milosevic, P. Zheng, and D. Gall, “Effect of electronegativity on electron surface scattering in thin metal layers,” Appl. Phys. Lett. 120, 041601 (2022).10.1063/5.0078877
    [9]
    L. Zhu, H. Liu, C. J. Pickard, G. Zou, and Y. Ma, “Reactions of xenon with iron and nickel are predicted in the Earth’s inner core,” Nat. Chem. 6, 644–648 (2014).10.1038/nchem.1925
    [10]
    X. Dong et al., “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440–445 (2017).10.1038/nchem.2716
    [11]
    M. S. Miao et al., “Anionic chemistry of noble gases: Formation of Mg–NG (NG = Xe, Kr, Ar) compounds under pressure,” J. Am. Chem. Soc. 137, 14122–14128 (2015).10.1021/jacs.5b08162
    [12]
    B. Monserrat, M. Martinez-canales, R. J. Needs, and C. J. Pickard, “Helium-iron compounds at terapascal pressures,” Phys. Rev. Lett. 121, 015301 (2018).10.1103/physrevlett.121.015301
    [13]
    J. Zhang et al., “Rare helium-bearing compound FeO2He stabilized at deep-earth conditions,” Phys. Rev. Lett. 121, 255703 (2018).10.1103/physrevlett.121.255703
    [14]
    H. Gao, J. Sun, C. J. Pickard, and R. J. Needs, “Prediction of pressure-induced stabilization of noble-gas-atom compounds with alkali oxides and alkali sulfides,” Phys. Rev. Mater. 3, 015002 (2019).10.1103/physrevmaterials.3.015002
    [15]
    M. S. Miao, “Caesium in high oxidation states and as a p-block element,” Nat. Chem. 5, 846–852 (2013).10.1038/nchem.1754
    [16]
    Q. Zhu, A. R. Oganov, and Q. Zeng, “Formation of stoichiometric CsFn compounds,” Sci. Rep. 5, 7875 (2015).10.1038/srep07875
    [17]
    Y. Geng et al., “Pressure induced weakness of electrostatic interaction and solid decomposition in Cs–I compounds,” Phys. Chem. Chem. Phys. 25, 23448–23453 (2023).10.1039/d3cp02343e
    [18]
    N. Dubrovinskaia et al., “Beating the miscibility barrier between iron group elements and magnesium by high-pressure alloying,” Phys. Rev. Lett. 95, 245502 (2005).10.1103/physrevlett.95.245502
    [19]
    P. Gao et al., “Iron–magnesium compounds under high pressure,” New J. Chem. 43, 17403–17407 (2019).10.1039/c9nj02804h
    [20]
    Y. Lv et al., “Reverse charge transfer and decomposition in Ca–Te compounds under high pressure,” Phys. Chem. Chem. Phys. 26, 10399–10407 (2024).10.1039/D3CP06209K
    [21]
    Y. Liu et al., “Pressure-induced phase transitions and decompositions of Sr–S compounds,” Physica B Condens. Matter 681, 415846 (2024).10.1016/j.physb.2024.415846
    [22]
    X. Dong, A. R. Oganov, H. Cui, X. F. Zhou, and H. T. Wang, “Electronegativity and chemical hardness of elements under pressure,” Proc. Natl. Acad. Sci. U. S. A. 119, e2117416119 (2022).10.1073/pnas.2117416119
    [23]
    H. Huang et al., “Room-temperature wide-gap inorganic materials with excellent plasticity,” Adv. Funct. Mater. 33, 2306042 (2023).10.1002/adfm.202306042
    [24]
    J. F. Hamilton, “The silver halide photographic process,” Adv. Phys. 37, 359–441 (1988).10.1080/00018738800101399
    [25]
    B. E. Mellander, “Electrical conductivity and activation volume of the solid electrolyte phase α-AgI and the high-pressure phase fcc AgI,” Phys. Rev. B 26, 5886–5896 (1982).10.1103/physrevb.26.5886
    [26]
    C. An et al., “Plasmonic silver incorporated silver halides for efficient photocatalysis,” J. Mater. Chem. A 4, 4336–4352 (2016).10.1039/c5ta07719b
    [27]
    X. Ma, Y. Dai, M. Guo, and B. Huang, “The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX (X = Cl, Br, I): A theoretical study,” ChemPhysChem 13, 2304–2309 (2012).10.1002/cphc.201200159
    [28]
    Y. Fan et al., “Regulations of silver halide nanostructure and composites on photocatalysis,” Adv. Compos. Hybrid Mater. 1, 269–299 (2018).10.1007/s42114-017-0005-2
    [29]
    J. Li et al., “Mechanochemistry and the evolution of ionic bonds in dense silver iodide,” JACS Au 3, 402–408 (2023).10.1021/jacsau.2c00550
    [30]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063–2070 (2012).10.1016/j.cpc.2012.05.008
    [31]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
    [32]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
    [33]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
    [34]
    D. C. Patton and M. R. Pederson, “Application of the generalized-gradient approximation to rare-gas dimers,” Phys. Rev. A 56, R2495–R2498 (1997).10.1103/physreva.56.r2495
    [35]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).10.1103/physrevb.50.17953
    [36]
    H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).10.1103/physrevb.13.5188
    [37]
    W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias,” J. Phys.: Condens. Matter 21, 084204 (2009).10.1088/0953-8984/21/8/084204
    [38]
    R. Dronskowski and P. E. Bloechl, “Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations,” J. Phys. Chem. 97, 8617–8624 (1993).10.1021/j100135a014
    [39]
    S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “LOBSTER: A tool to extract chemical bonding from plane-wave based DFT,” J. Comput. Chem. 37, 1030–1035 (2016).10.1002/jcc.24300
    [40]
    A. Grzelak et al., “Metal fluoride nanotubes featuring square-planar building blocks in a high-pressure polymorph of AgF2,” Dalton Trans. 46, 14742–14745 (2017).10.1039/c7dt03178e
    [41]
    A. Grzelak et al., “High-pressure behavior of silver fluorides up to 40 GPa,” Inorg. Chem. 56, 14651–14661 (2017).10.1021/acs.inorgchem.7b02528
    [42]
    W. Grochala and R. Hoffmann, “Real and hypothetical intermediate-valence AgII/AgIII and AgII/AgI fluoride systems as potential superconductors,” Angew. Chem., Int. Ed. 40, 2742–2781 (2001).10.1002/1521-3773(20010803)40:15<2742::aid-anie2742>3.0.co;2-x
    [43]
    S. Glaus and G. Calzaferri, “The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study,” Photochem. Photobiol. Sci. 2, 398–401 (2003).10.1039/b211678b
    [44]
    S. Hull and D. A. Keen, “Pressure-induced phase transitions in AgCl, AgBr, and AgI,” Phys. Rev. B 59, 750–761 (1999).10.1103/physrevb.59.750
    [45]
    L. A. Palomino-Rojas et al., “Density functional study of the structural properties of silver halides: LDA vs GGA calculations,” Solid State Sci. 10, 1228–1235 (2008).10.1016/j.solidstatesciences.2007.11.022
    [46]
    M. Boukhtouta et al., “Phase stability and electronic properties of silver halides,” Phase Transitions 88, 357–367 (2015).10.1080/01411594.2014.964236
    [47]
    P. T. Jochym and K. Parlinski, “Elastic properties and phase stability of AgBr under pressure,” Phys. Rev. B 65, 024106 (2001).10.1103/physrevb.65.024106
    [48]
    R. C. Hanson, T. A. Fjeldly, and H. D. Hochheimer, “Raman scattering from five phases of silver iodide,” Phys. Status Solidi B 70, 567–576 (1975).10.1002/pssb.2220700216
    [49]
    D. A. Keen and S. Hull, “A powder neutron diffraction study of the pressure-induced phase transitions within silver iodide,” J. Phys.: Condens. Matter 5, 23–32 (1993).10.1088/0953-8984/5/1/005
    [50]
    M. Catti, “First-principles Landau potential for the rocksalt to KOH to TlI-type phase transitions of AgI,” Phys. Rev. B 74, 174105 (2006).10.1103/physrevb.74.174105
    [51]
    L. Yu, Q. Yan, and A. Ruzsinszky, “Key role of antibonding electron transfer in bonding on solid surfaces,” Phys. Rev. Mater. 3, 092801 (2019).10.1103/physrevmaterials.3.092801
    [52]
    J. Wang, Y. Zhou, T. Liao, J. Zhang, and Z. Lin, “A first-principles investigation of the phase stability of Ti2AlC with Al vacancies,” Scr. Mater. 58, 227–230 (2008).10.1016/j.scriptamat.2007.09.048
    [53]
    C. N. Louis, K. Iyakutti, and P. Malarvizhi, “Pressure dependence of metallization and superconducting transition in AgCl and AgBr,” J. Phys.: Condens. Matter 16, 1577–1592 (2004).10.1088/0953-8984/16/9/006
    [54]
    B. Hammer and J. K. Nørskov, “Electronic factors determining the reactivity of metal surfaces,” Surf. Sci. 343, 211–220 (1995).10.1016/0039-6028(96)80007-0
    [55]
    Q. Hu et al., “Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction,” Nat. Commun. 13, 3958 (2022).10.1038/s41467-022-31660-2
    [56]
    F. Tang, L. Wang, M. Dessie Walle, A. Mustapha, and Y. N. Liu, “An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural,” J. Catal. 383, 172–180 (2020).10.1016/j.jcat.2020.01.019
    [57]
    M. Andersen, “Revelations of the d band,” Nat. Catal. 6, 460–461 (2023).10.1038/s41929-023-00964-x
    [58]
    L. G. M. Pettersson and A. Nilsson, “A molecular perspective on the d-band model: Synergy between experiment and theory,” Top. Catal. 57, 2–13 (2014).10.1007/s11244-013-0157-4
    [59]
    S. Jiao, X. Fu, and H. Huang, “Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond,” Adv. Funct. Mater. 32, 2107651 (2022).10.1002/adfm.202107651
    [60]
    Z. Xu et al., “Regulation of ionic bond in group IIB transition metal iodides,” Chin. Phys. Lett. 40, 076201 (2023).10.1088/0256-307x/40/7/076201
    [61]
    Z. Xu et al., “Pressure-induced decomposition of cadmium iodide,” Europhys. Lett. 140, 16003 (2022).10.1209/0295-5075/ac94f4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (101) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return