Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
Ma Zhiguo, Wang Yumiao, Yang Yi, Wang Youjing, Zhao Kai, Li Yixin, Fu Changbo, He Wanbing, Ma Yugang. Simulation of nuclear isomer production in laser-induced plasma[J]. Matter and Radiation at Extremes, 2024, 9(5): 055201. doi: 10.1063/5.0212163
Citation: Ma Zhiguo, Wang Yumiao, Yang Yi, Wang Youjing, Zhao Kai, Li Yixin, Fu Changbo, He Wanbing, Ma Yugang. Simulation of nuclear isomer production in laser-induced plasma[J]. Matter and Radiation at Extremes, 2024, 9(5): 055201. doi: 10.1063/5.0212163

Simulation of nuclear isomer production in laser-induced plasma

doi: 10.1063/5.0212163
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: cbfu@fudan.edu.cn and hewanbing@fudan.edu.cn
  • Received Date: 2024-04-03
  • Accepted Date: 2024-07-23
  • Available Online: 2024-09-01
  • Publish Date: 2024-09-01
  • Nuclear isomers play essential roles in various fields, including stellar nucleosynthesis, nuclear clocks, nuclear batteries, clean nuclear energy, and γ-ray lasers. Recent technological advances in high-intensity lasers have made it possible to excite or de-excite nuclear isomers using table-top laser equipment. Utilizing a particle-in-cell code, we investigate the interaction of a laser with a nanowire array and calculate the production rates of the 73mGe (E1 = 13.3 keV) and 107mAg (E1 = 93.1 keV) isomers. For 73m1Ge, production by Coulomb excitation is found to contribute a peak efficiency of 1.0 × 1019 particles s−1 J−1, while nuclear excitation by electron capture (NEEC) contributes a peak of 1.65 × 1011 particles s−1 J−1. These results indicate a high isomeric production ratio, as well as demonstrating the potential for confirming the existence of NEEC, a long-expected but so far experimentally unobserved fundamental process.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    Zhiguo Ma: Data curation (equal); Investigation (equal); Software (equal); Writing – original draft (equal). Yumiao Wang: Methodology (equal). Yi Yang: Methodology (equal). Youjing Wang: Software (equal). Kai Zhao: Software (equal). Yixin Li: Investigation (equal); Writing – review & editing (supporting). Changbo Fu: Conceptualization (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Writing – original draft (equal); Writing – review & editing (equal). Wanbing He: Conceptualization (equal); Methodology (equal); Resources (equal). Yugang Ma: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Resources (equal).
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science 300, 1107–1111 (2003).10.1126/science.1080552
    [2]
    Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427, 41–155 (2006).10.1016/j.physrep.2006.01.002
    [3]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).10.1016/0030-4018(85)90151-8
    [4]
    J. W. Yoon, Y. G. Kim, I. W. Choi et al., “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
    [5]
    X. Wang, X. Liu, X. Lu et al., “13.4 fs, 0.1 Hz OPCPA front end for the 100 PW-class laser facility,” Ultrafast Sci. 2022, 9894358.10.34133/2022/9894358
    [6]
    L. L. Ji, J. Snyder, and B. F. Shen, “Single-pulse laser-electron collision within a micro-channel plasma target,” Plasma Phys. Controlled Fusion 61, 065019 (2019).10.1088/1361-6587/ab1692
    [7]
    Y. Wu, L. Ji, and R. Li, “On the upper limit of laser intensity attainable in nonideal vacuum,” Photonics Res. 9, 541–547 (2021).10.1364/prj.416555
    [8]
    B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling astrophysical phenomena in the laboratory with intense lasers,” Science 284, 1488–1493 (1999).10.1126/science.284.5419.1488
    [9]
    F. Gobet, C. Plaisir, F. Hannachi et al., “Nuclear physics studies using high energy lasers,” Nucl. Instrum. Methods Phys. Res., Sect. A 653, 80–83 (2011).10.1016/j.nima.2011.01.106
    [10]
    C. Fu, G. Zhang, and Y. Ma, “New opportunities for nuclear and atomic physics on the femto- to nanometer scale with ultra-high-intensity lasers,” Matter Radiat. Extremes 7, 024201 (2022).10.1063/5.0059405
    [11]
    J. Feng, Y. Li, J. Tan et al., “Laser plasma-accelerated ultra-intense electron beam for efficiently exciting nuclear isomers,” Laser Photonics Rev. 17, 2300514 (2023).10.1002/lpor.202300514
    [12]
    J. Feng, W. Wang, C. Fu et al., “Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons,” Phys. Rev. Lett. 128, 052501 (2022).10.1103/physrevlett.128.052501
    [13]
    W. Wang, J. Zhou, B. Liu, and X. Wang, “Exciting the isomeric 229Th nuclear state via laser-driven electron recollision,” Phys. Rev. Lett. 127, 052501 (2021).10.1103/physrevlett.127.052501
    [14]
    W. T. Pan, T. Song, H.-Y. Lan et al., “Photo-excitation production of medically interesting isomers using intense γ-ray sourcepan,” Appl. Radiat. Isot. 168, 109534 (2021).10.1016/j.apradiso.2020.109534
    [15]
    H. Y. Lan, D. Wu, J. X. Liu et al., “Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons,” Nucl. Sci. Tech. 34, 74 (2023).10.1007/s41365-023-01219-x
    [16]
    J. Zhang, W. Qi, W. Fan et al., “Study of the isomeric yield ratio in the photoneutron reaction of natural holmium induced by laser-accelerated electron beams,” Front. Astron. Space Sci. 10, 1265919 (2023).10.3389/fspas.2023.1265919
    [17]
    W. Fan, W. Qi, J. Zhang et al., “Efficient production of the nuclear isomer 93mMo with laser-accelerated proton beam and its astrophysical implication on 92Mo production,” Phys. Rev. Res. 5, 043120 (2023).10.1103/physrevresearch.5.043120
    [18]
    P. Walker and G. Dracoulis, “Energy traps in atomic nuclei,” Nature 399, 35–40 (1999).10.1038/19911
    [19]
    J. J. Carroll, “Nuclear structure and the search for induced energy release from isomers,” Nucl. Instrum. Methods Phys. Res., Sect. B 261, 960–964 (2007).10.1016/j.nimb.2007.04.128
    [20]
    E. V. Tkalya, “Proposal for a nuclear gamma-ray laser of optical range,” Phys. Rev. Lett. 106, 162501 (2011).10.1103/physrevlett.106.162501
    [21]
    B. Seiferle, L. von der Wense, P. V. Bilous et al., “Energy of the 229Th nuclear clock transition,” Nature 573, 243–246 (2019).10.1038/s41586-019-1533-4
    [22]
    L. von der Wense and B. Seiferle, “The 229Th isomer: Prospects for a nuclear optical clock,” Eur. Phys. J. A 56, 277 (2020).10.1140/epja/s10050-020-00263-0
    [23]
    K. Beeks, T. Sikorsky, T. Schumm et al., “The thorium-229 low-energy isomer and the nuclear clock,” Nat. Rev. Phys. 3, 238–248 (2021).10.1038/s42254-021-00286-6
    [24]
    D. Belic, C. Arlandini, J. Besserer et al., “Photoactivation of 180Tam and its implications for the nucleosynthesis of nature’s rarest naturally occurring isotope,” Phys. Rev. Lett. 83, 5242 (1999).10.1103/physrevlett.83.5242
    [25]
    Y.-B. Xu, H.-J. Ding, S.-D. Zhang et al., “Observation of 186mTa,” Nucl. Sci. Tech. 17, 16–20 (2006).10.1016/s1001-8042(06)60004-3
    [26]
    G. Gosselin, P. Morel, and P. Mohr, “Modification of nuclear transitions in stellar plasma by electronic processes: K isomers in 176Lu and 180Ta under s-process conditions,” Phys. Rev. C 81, 055808 (2010).10.1103/physrevc.81.055808
    [27]
    G. W. Misch, S. K. Ghorui, P. Banerjee, Y. Sun, and M. R. Mumpower, “Astromers: Nuclear isomers in astrophysics,” Astrophys. J., Suppl. Ser. 252(1), 2 (2020).10.3847/1538-4365/abc41d
    [28]
    J. Derouillat, A. Beck, F. Pérez et al., “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
    [29]
    Z. Ma, C. Fu, W. He, and Y. Ma, “Manipulation of nuclear isomers with lasers: Mechanisms and prospects,” Sci. Bull. 67, 1526–1529 (2022).10.1016/j.scib.2022.06.020
    [30]
    M. R. Harston and J. F. Chemin, “Mechanisms of nuclear excitation in plasmas,” Phys. Rev. C 59, 2462 (1999).10.1103/physrevc.59.2462
    [31]
    S. Kishimoto, Y. Yoda, M. Seto, Y. Kobayashi, S. Kitao, R. Haruki, T. Kawauchi, K. Fukutani, and T. Okano, “Observation of nuclear excitation by electron transition in 197Au with synchrotron X rays and an avalanche photodiode,” Phys. Rev. Lett. 85, 1831–1834 (2000).10.1103/physrevlett.85.1831
    [32]
    I. Izosimov, “Role of autoionization states in nuclear excitation and triggering by an electron transition (NEET),” J. Nucl. Sci. Technol. 45, 1–5 (2008).10.1080/00223131.2008.10875967
    [33]
    C. J. Chiara, J. J. Carroll, M. P. Carpenter et al., “Isomer depletion as experimental evidence of nuclear excitation by electron capture,” Nature 554, 216–218 (2018).10.1038/nature25483
    [34]
    Y. Wu, C. H. Keitel, and A. Pálffy, “93mMo isomer depletion via beam-based nuclear excitation by electron capture,” Phys. Rev. Lett. 122, 212501 (2019).10.1103/physrevlett.122.212501
    [35]
    S. Guo, B. Ding, X. H. Zhou et al., “Probing 93mMo isomer depletion with an isomer beam,” Phys. Rev. Lett. 128, 242502 (2022).10.1103/physrevlett.128.242502
    [36]
    N.-Q. Cai, G.-Q. Zhang, C.-B. Fu, and Y.-G. Ma, “Populating 229mTh via two-photon electronic bridge mechanism,” Nucl. Sci. Tech. 32, 59 (2021).10.1007/s41365-021-00900-3
    [37]
    Y. Wu, J. Gunst, C. H. Keitel, and A. Pálffy, “Tailoring laser-generated plasmas for efficient nuclear excitation by electron capture,” Phys. Rev. Lett. 120, 052504 (2018).10.1103/physrevlett.120.052504
    [38]
    J. Gunst, Y. Wu, C. H. Keitel, and A. Pálffy, “Nuclear excitation by electron capture in optical-laser-generated plasmas,” Phys. Rev. E 97, 063205 (2018).10.1103/physreve.97.063205
    [39]
    V. I. Goldanskii and V. A. Namiot, “On the excitation of isomeric nuclear levels by laser radiation through inverse internal electron conversion,” Phys. Lett. B 62, 393–394 (1976).10.1016/0370-2693(76)90665-1
    [40]
    A. Pálffy, J. Evers, and C. H. Keitel, “Isomer triggering via nuclear excitation by electron capture,” Phys. Rev. Lett. 99, 172502 (2007).10.1103/physrevlett.99.172502
    [41]
    S. Helmrich, K. Spenneberg, and A. Pálffy, “Coupling highly excited nuclei to the atomic shell in dense astrophysical plasmas,” Phys. Rev. C 90, 015802 (2014).10.1103/physrevc.90.015802
    [42]
    G. Gosselin, V. Méot, and P. Morel, “Modified nuclear level lifetime in hot dense plasmas,” Phys. Rev. C 76, 044611 (2007).10.1103/physrevc.76.044611
    [43]
    G. Gosselin and P. Morel, “Enhanced nuclear level decay in hot dense plasmas,” Phys. Rev. C 70, 064603 (2004).10.1103/physrevc.70.064603
    [44]
    K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, “Study of nuclear structure by electromagnetic excitation with accelerated ions,” Rev. Mod. Phys. 28, 432–542 (1956).10.1103/revmodphys.28.432
    [45]
    [46]
    S. Gargiulo, I. Madan, and F. Carbone, “Nuclear excitation by electron capture in excited ions,” Phys. Rev. Lett. 128, 212502 (2022).10.1103/physrevlett.128.212502
    [47]
    S. Kimura and A. Bonasera, “Deuteron-induced reactions generated by intense lasers for PET isotope production,” Nucl. Instrum. Methods Phys. Res., Sect. A 637, 164–170 (2011).10.1016/j.nima.2011.02.043
    [48]
    M. R. D. Rodrigues, A. Bonasera, M. Scisciò et al., “Radioisotope production using lasers: From basic science to applications,” Matter Radiat. Extremes 9, 037203 (2024).10.1063/5.0196909
    [49]
    D. Kong, G. Zhang, Y. Shou et al., “High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions,” Matter Radiat. Extremes 7, 064403 (2022).10.1063/5.0120845
    [50]
    L.-Q. Zhang, S.-D. Wu, H.-R. Huang et al., “Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array,” Phys. Plasmas 28, 023110 (2021).10.1063/5.0030909
    [51]
    A. Curtis, C. Calvi, J. Tinsley, R. Hollinger, V. Kaymak, A. Pukhov, S. Wang, A. Rockwood, Y. Wang, V. N. Shlyaptsev, and J. J. Rocca, “Micro-scale fusion in dense relativistic nanowire array plasmas,” Nat. Commun. 9, 1077 (2018).10.1038/s41467-018-03445-z
    [52]
    H. Schwoerer, S. Pfotenhauer, O. Jäckel et al., “Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets,” Nature 439, 445–448 (2006).10.1038/nature04492
    [53]
    T. Y. Xia, L. S. Zhang, P. J. Wang, and Y. Fang, “Synthesis of highly ordered silver nanowire arrays with SERS activity,” Adv. Mater. Res. 535–537, 368–371 (2012).10.4028/www.scientific.net/amr.535-537.368
    [54]
    M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).10.1117/12.938695
    [55]
    S. Jiang, L. L. Ji, H. Audesirk et al., “Microengineering laser plasma interactions at relativistic intensities,” Phys. Rev. Lett. 116, 085002 (2016).10.1103/physrevlett.116.085002
    [56]
    A. Pukhov, Z.-M. Sheng, and J. Meyer-ter Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).10.1063/1.873242
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (86) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return