Citation: | Ma Zhiguo, Wang Yumiao, Yang Yi, Wang Youjing, Zhao Kai, Li Yixin, Fu Changbo, He Wanbing, Ma Yugang. Simulation of nuclear isomer production in laser-induced plasma[J]. Matter and Radiation at Extremes, 2024, 9(5): 055201. doi: 10.1063/5.0212163 |
[1] |
K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science 300, 1107–1111 (2003).10.1126/science.1080552
|
[2] |
Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427, 41–155 (2006).10.1016/j.physrep.2006.01.002
|
[3] |
D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).10.1016/0030-4018(85)90151-8
|
[4] |
J. W. Yoon, Y. G. Kim, I. W. Choi et al., “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
|
[5] |
X. Wang, X. Liu, X. Lu et al., “13.4 fs, 0.1 Hz OPCPA front end for the 100 PW-class laser facility,” Ultrafast Sci. 2022, 9894358.10.34133/2022/9894358
|
[6] |
L. L. Ji, J. Snyder, and B. F. Shen, “Single-pulse laser-electron collision within a micro-channel plasma target,” Plasma Phys. Controlled Fusion 61, 065019 (2019).10.1088/1361-6587/ab1692
|
[7] |
Y. Wu, L. Ji, and R. Li, “On the upper limit of laser intensity attainable in nonideal vacuum,” Photonics Res. 9, 541–547 (2021).10.1364/prj.416555
|
[8] |
B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling astrophysical phenomena in the laboratory with intense lasers,” Science 284, 1488–1493 (1999).10.1126/science.284.5419.1488
|
[9] |
F. Gobet, C. Plaisir, F. Hannachi et al., “Nuclear physics studies using high energy lasers,” Nucl. Instrum. Methods Phys. Res., Sect. A 653, 80–83 (2011).10.1016/j.nima.2011.01.106
|
[10] |
C. Fu, G. Zhang, and Y. Ma, “New opportunities for nuclear and atomic physics on the femto- to nanometer scale with ultra-high-intensity lasers,” Matter Radiat. Extremes 7, 024201 (2022).10.1063/5.0059405
|
[11] |
J. Feng, Y. Li, J. Tan et al., “Laser plasma-accelerated ultra-intense electron beam for efficiently exciting nuclear isomers,” Laser Photonics Rev. 17, 2300514 (2023).10.1002/lpor.202300514
|
[12] |
J. Feng, W. Wang, C. Fu et al., “Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons,” Phys. Rev. Lett. 128, 052501 (2022).10.1103/physrevlett.128.052501
|
[13] |
W. Wang, J. Zhou, B. Liu, and X. Wang, “Exciting the isomeric 229Th nuclear state via laser-driven electron recollision,” Phys. Rev. Lett. 127, 052501 (2021).10.1103/physrevlett.127.052501
|
[14] |
W. T. Pan, T. Song, H.-Y. Lan et al., “Photo-excitation production of medically interesting isomers using intense γ-ray sourcepan,” Appl. Radiat. Isot. 168, 109534 (2021).10.1016/j.apradiso.2020.109534
|
[15] |
H. Y. Lan, D. Wu, J. X. Liu et al., “Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons,” Nucl. Sci. Tech. 34, 74 (2023).10.1007/s41365-023-01219-x
|
[16] |
J. Zhang, W. Qi, W. Fan et al., “Study of the isomeric yield ratio in the photoneutron reaction of natural holmium induced by laser-accelerated electron beams,” Front. Astron. Space Sci. 10, 1265919 (2023).10.3389/fspas.2023.1265919
|
[17] |
W. Fan, W. Qi, J. Zhang et al., “Efficient production of the nuclear isomer 93mMo with laser-accelerated proton beam and its astrophysical implication on 92Mo production,” Phys. Rev. Res. 5, 043120 (2023).10.1103/physrevresearch.5.043120
|
[18] |
P. Walker and G. Dracoulis, “Energy traps in atomic nuclei,” Nature 399, 35–40 (1999).10.1038/19911
|
[19] |
J. J. Carroll, “Nuclear structure and the search for induced energy release from isomers,” Nucl. Instrum. Methods Phys. Res., Sect. B 261, 960–964 (2007).10.1016/j.nimb.2007.04.128
|
[20] |
E. V. Tkalya, “Proposal for a nuclear gamma-ray laser of optical range,” Phys. Rev. Lett. 106, 162501 (2011).10.1103/physrevlett.106.162501
|
[21] |
B. Seiferle, L. von der Wense, P. V. Bilous et al., “Energy of the 229Th nuclear clock transition,” Nature 573, 243–246 (2019).10.1038/s41586-019-1533-4
|
[22] |
L. von der Wense and B. Seiferle, “The 229Th isomer: Prospects for a nuclear optical clock,” Eur. Phys. J. A 56, 277 (2020).10.1140/epja/s10050-020-00263-0
|
[23] |
K. Beeks, T. Sikorsky, T. Schumm et al., “The thorium-229 low-energy isomer and the nuclear clock,” Nat. Rev. Phys. 3, 238–248 (2021).10.1038/s42254-021-00286-6
|
[24] |
D. Belic, C. Arlandini, J. Besserer et al., “Photoactivation of 180Tam and its implications for the nucleosynthesis of nature’s rarest naturally occurring isotope,” Phys. Rev. Lett. 83, 5242 (1999).10.1103/physrevlett.83.5242
|
[25] |
Y.-B. Xu, H.-J. Ding, S.-D. Zhang et al., “Observation of 186mTa,” Nucl. Sci. Tech. 17, 16–20 (2006).10.1016/s1001-8042(06)60004-3
|
[26] |
G. Gosselin, P. Morel, and P. Mohr, “Modification of nuclear transitions in stellar plasma by electronic processes: K isomers in 176Lu and 180Ta under s-process conditions,” Phys. Rev. C 81, 055808 (2010).10.1103/physrevc.81.055808
|
[27] |
G. W. Misch, S. K. Ghorui, P. Banerjee, Y. Sun, and M. R. Mumpower, “Astromers: Nuclear isomers in astrophysics,” Astrophys. J., Suppl. Ser. 252(1), 2 (2020).10.3847/1538-4365/abc41d
|
[28] |
J. Derouillat, A. Beck, F. Pérez et al., “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
|
[29] |
Z. Ma, C. Fu, W. He, and Y. Ma, “Manipulation of nuclear isomers with lasers: Mechanisms and prospects,” Sci. Bull. 67, 1526–1529 (2022).10.1016/j.scib.2022.06.020
|
[30] |
M. R. Harston and J. F. Chemin, “Mechanisms of nuclear excitation in plasmas,” Phys. Rev. C 59, 2462 (1999).10.1103/physrevc.59.2462
|
[31] |
S. Kishimoto, Y. Yoda, M. Seto, Y. Kobayashi, S. Kitao, R. Haruki, T. Kawauchi, K. Fukutani, and T. Okano, “Observation of nuclear excitation by electron transition in 197Au with synchrotron X rays and an avalanche photodiode,” Phys. Rev. Lett. 85, 1831–1834 (2000).10.1103/physrevlett.85.1831
|
[32] |
I. Izosimov, “Role of autoionization states in nuclear excitation and triggering by an electron transition (NEET),” J. Nucl. Sci. Technol. 45, 1–5 (2008).10.1080/00223131.2008.10875967
|
[33] |
C. J. Chiara, J. J. Carroll, M. P. Carpenter et al., “Isomer depletion as experimental evidence of nuclear excitation by electron capture,” Nature 554, 216–218 (2018).10.1038/nature25483
|
[34] |
Y. Wu, C. H. Keitel, and A. Pálffy, “93mMo isomer depletion via beam-based nuclear excitation by electron capture,” Phys. Rev. Lett. 122, 212501 (2019).10.1103/physrevlett.122.212501
|
[35] |
S. Guo, B. Ding, X. H. Zhou et al., “Probing 93mMo isomer depletion with an isomer beam,” Phys. Rev. Lett. 128, 242502 (2022).10.1103/physrevlett.128.242502
|
[36] |
N.-Q. Cai, G.-Q. Zhang, C.-B. Fu, and Y.-G. Ma, “Populating 229mTh via two-photon electronic bridge mechanism,” Nucl. Sci. Tech. 32, 59 (2021).10.1007/s41365-021-00900-3
|
[37] |
Y. Wu, J. Gunst, C. H. Keitel, and A. Pálffy, “Tailoring laser-generated plasmas for efficient nuclear excitation by electron capture,” Phys. Rev. Lett. 120, 052504 (2018).10.1103/physrevlett.120.052504
|
[38] |
J. Gunst, Y. Wu, C. H. Keitel, and A. Pálffy, “Nuclear excitation by electron capture in optical-laser-generated plasmas,” Phys. Rev. E 97, 063205 (2018).10.1103/physreve.97.063205
|
[39] |
V. I. Goldanskii and V. A. Namiot, “On the excitation of isomeric nuclear levels by laser radiation through inverse internal electron conversion,” Phys. Lett. B 62, 393–394 (1976).10.1016/0370-2693(76)90665-1
|
[40] |
A. Pálffy, J. Evers, and C. H. Keitel, “Isomer triggering via nuclear excitation by electron capture,” Phys. Rev. Lett. 99, 172502 (2007).10.1103/physrevlett.99.172502
|
[41] |
S. Helmrich, K. Spenneberg, and A. Pálffy, “Coupling highly excited nuclei to the atomic shell in dense astrophysical plasmas,” Phys. Rev. C 90, 015802 (2014).10.1103/physrevc.90.015802
|
[42] |
G. Gosselin, V. Méot, and P. Morel, “Modified nuclear level lifetime in hot dense plasmas,” Phys. Rev. C 76, 044611 (2007).10.1103/physrevc.76.044611
|
[43] |
G. Gosselin and P. Morel, “Enhanced nuclear level decay in hot dense plasmas,” Phys. Rev. C 70, 064603 (2004).10.1103/physrevc.70.064603
|
[44] |
K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, “Study of nuclear structure by electromagnetic excitation with accelerated ions,” Rev. Mod. Phys. 28, 432–542 (1956).10.1103/revmodphys.28.432
|
[45] | |
[46] |
S. Gargiulo, I. Madan, and F. Carbone, “Nuclear excitation by electron capture in excited ions,” Phys. Rev. Lett. 128, 212502 (2022).10.1103/physrevlett.128.212502
|
[47] |
S. Kimura and A. Bonasera, “Deuteron-induced reactions generated by intense lasers for PET isotope production,” Nucl. Instrum. Methods Phys. Res., Sect. A 637, 164–170 (2011).10.1016/j.nima.2011.02.043
|
[48] |
M. R. D. Rodrigues, A. Bonasera, M. Scisciò et al., “Radioisotope production using lasers: From basic science to applications,” Matter Radiat. Extremes 9, 037203 (2024).10.1063/5.0196909
|
[49] |
D. Kong, G. Zhang, Y. Shou et al., “High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions,” Matter Radiat. Extremes 7, 064403 (2022).10.1063/5.0120845
|
[50] |
L.-Q. Zhang, S.-D. Wu, H.-R. Huang et al., “Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array,” Phys. Plasmas 28, 023110 (2021).10.1063/5.0030909
|
[51] |
A. Curtis, C. Calvi, J. Tinsley, R. Hollinger, V. Kaymak, A. Pukhov, S. Wang, A. Rockwood, Y. Wang, V. N. Shlyaptsev, and J. J. Rocca, “Micro-scale fusion in dense relativistic nanowire array plasmas,” Nat. Commun. 9, 1077 (2018).10.1038/s41467-018-03445-z
|
[52] |
H. Schwoerer, S. Pfotenhauer, O. Jäckel et al., “Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets,” Nature 439, 445–448 (2006).10.1038/nature04492
|
[53] |
T. Y. Xia, L. S. Zhang, P. J. Wang, and Y. Fang, “Synthesis of highly ordered silver nanowire arrays with SERS activity,” Adv. Mater. Res. 535–537, 368–371 (2012).10.4028/www.scientific.net/amr.535-537.368
|
[54] |
M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).10.1117/12.938695
|
[55] |
S. Jiang, L. L. Ji, H. Audesirk et al., “Microengineering laser plasma interactions at relativistic intensities,” Phys. Rev. Lett. 116, 085002 (2016).10.1103/physrevlett.116.085002
|
[56] |
A. Pukhov, Z.-M. Sheng, and J. Meyer-ter Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).10.1063/1.873242
|