Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
Yao Yilin, Wu Zhenbo, Ye Tao, Zhu Shaoping, He Xiantu, Qiao Bin. Directed pulsed neutron source generation from inverse kinematic reactions driven by intense lasers[J]. Matter and Radiation at Extremes, 2024, 9(6): 065201. doi: 10.1063/5.0207839
Citation: Yao Yilin, Wu Zhenbo, Ye Tao, Zhu Shaoping, He Xiantu, Qiao Bin. Directed pulsed neutron source generation from inverse kinematic reactions driven by intense lasers[J]. Matter and Radiation at Extremes, 2024, 9(6): 065201. doi: 10.1063/5.0207839

Directed pulsed neutron source generation from inverse kinematic reactions driven by intense lasers

doi: 10.1063/5.0207839
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: bqiao@pku.edu.cn
  • Received Date: 2024-03-11
  • Accepted Date: 2024-09-10
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • Neutron production driven by intense lasers utilizing inverse kinematic reactions is explored self-consistently by a combination of particle-in-cell simulations for laser-driven ion acceleration and Monte Carlo nuclear reaction simulations for neutron production. It is proposed that laser-driven light-sail acceleration from ultrathin lithium foils can provide an energetic lithium-ion beam as the projectile bombarding a light hydrocarbon target with sufficiently high flux for the inverse p(Li7,n) reaction to be efficiently achieved. Three-dimensional self-consistent simulations show that a forward-directed pulsed neutron source with ultrashort pulse duration 3 ns, small divergence angle 26°, and extremely high peak flux 3 × 1014 n/(cm2⋅s) can be produced by petawatt lasers at intensities of 1021 W/cm2. These results indicate that a laser-driven neutron source based on inverse kinematics has promise as a novel compact pulsed neutron generator for practical applications, since the it can operate in a safe and repetitive way with almost no undesirable radiation.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Yilin Yao: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Zhenbo Wu: Conceptualization (equal); Data curation (equal); Investigation (equal); Methodology (equal). Tao Ye: Conceptualization (equal); Methodology (equal). Shaoping Zhu: Conceptualization (equal); Resources (equal); Supervision (equal). Xiantu He: Conceptualization (equal); Methodology (equal); Resources (equal). Bin Qiao: Conceptualization (equal); Funding acquisition (equal); Resources (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, “Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction,” J. Am. Chem. Soc. 125, 14300 (2003).10.1021/ja037055w
    [2]
    R. F. Barth, A. H. Soloway, and R. G. Fairchild, “Boron neutron capture therapy for cancer,” Sci. Am. 263, 100 (1990).10.1038/scientificamerican1090-100
    [3]
    R. Dams, J. A. Robbins, K. Rahn, and J. W. Winchester, “Nondestructive neutron activation analysis of air pollution particulates,” Anal. Chem. 42, 861 (1970).10.1021/ac60290a004
    [4]
    A. Krasilnikov, M. Sasao, Y. A. Kaschuck, T. Nishitani, P. Batistoni, V. Zaveryaev, S. Popovichev, T. Iguchi, O. Jarvis, J. Källne et al., “Status of ITER neutron diagnostic development,” Nucl. Fusion 45, 1503 (2005).10.1088/0029-5515/45/12/005
    [5]
    P. Ageron, “Cold neutron sources at ILL,” Nucl. Instrum. Methods Phys. Res., Sect. A 284, 197 (1989).10.1016/0168-9002(89)90281-7
    [6]
    B. Blau, K. N. Clausen, S. Gvasaliya et al., “The swiss spallation neutron source SINQ at Paul Scherrer Institut,” Neutron News 20(3), 5–8 (2009).10.1080/10448630903120387
    [7]
    J. Wei, H. Chen, Y. Chen, Y. Chen, Y. Chi, C. Deng, H. Dong, L. Dong, S. Fang, J. Feng et al., “China spallation neutron source: Design, R&D, and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 600, 10 (2009).10.1016/j.nima.2008.11.017
    [8]
    M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel et al., “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/physrevlett.110.044802
    [9]
    I. Pomerantz, E. McCary, A. Meadows, A. Arefiev, A. Bernstein, C. Chester, J. Cortez, M. Donovan, G. Dyer, E. Gaul et al., “Ultrashort pulsed neutron source,” Phys. Rev. Lett. 113, 184801 (2014).10.1103/physrevlett.113.184801
    [10]
    A. Kleinschmidt, V. Bagnoud, O. Deppert, A. Favalli, S. Frydrych, J. Hornung, D. Jahn, G. Schaumann, A. Tebartz, F. Wagner et al., “Intense, directed neutron beams from a laser-driven neutron source at PHELIX,” Phys. Plasmas 25, 053101 (2018).10.1063/1.5006613
    [11]
    A. Yogo, S. R. Mirfayzi, Y. Arikawa, Y. Abe, T. Wei, T. Mori, Z. Lan, Y. Hoonoki, D. O. Golovin, K. Koga et al., “Single shot radiography by a bright source of laser-driven thermal neutrons and x-rays,” Appl. Phys. Express 14, 106001 (2021).10.35848/1882-0786/ac2212
    [12]
    M. Günther, O. Rosmej, P. Tavana, M. Gyrdymov, A. Skobliakov, A. Kantsyrev, S. Zähter, N. Borisenko, A. Pukhov, and N. Andreev, “Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science,” Nat. Commun. 13, 170 (2022).10.1038/s41467-021-27694-7
    [13]
    M. Zimmer, S. Scheuren, A. Kleinschmidt, N. Mitura, A. Tebartz, G. Schaumann, T. Abel, T. Ebert, M. Hesse, Ş. Zähter et al., “Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source,” Nat. Commun. 13, 1173 (2022).10.1038/s41467-022-28756-0
    [14]
    A. Alejo, H. Ahmed, A. G. Krygier et al., “Stabilized radiation pressure acceleration and neutron generation in ultrathin deuterated foils,” Phys. Rev. Lett. 129, 114801 (2022).10.1103/physrevlett.129.114801
    [15]
    T. E. Blue and J. C. Yanch, “Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors,” J. Neuro-Oncol. 62, 19 (2003).10.1007/bf02699931
    [16]
    L. Willingale, G. Petrov, A. Maksimchuk, J. Davis, R. Freeman, A. Joglekar, T. Matsuoka, C. Murphy, V. Ovchinnikov, A. Thomas et al., “Comparison of bulk and pitcher-catcher targets for laser-driven neutron production,” Phys. Plasmas 18, 083106 (2011).10.1063/1.3624769
    [17]
    H. Hu, Q. Wang, J. Qin, Y. Wu, T. Zhang, Z. Xie, X. Jiang, G. Zhang, H. Xu, X. Zheng et al., “Study on composite material for shielding mixed neutron and γ-Rays,” IEEE Trans. Nucl. Sci. 55, 2376 (2008).10.1109/tns.2008.2000800
    [18]
    [19]
    [20]
    J. Wilson, M. Lebois, P. Halipre, B. Leniau, I. Matea, D. Verney, S. Oberstedt, R. Billnert, A. Oberstedt, G. Georgiev, and J. Ljungvall, “LICORNE: A new and unique facility for producing intense, kinematically focused neutron beams at the IPN orsay,” EPJ Web Conf. 62, 05006 (2013).10.1051/epjconf/20136205006
    [21]
    M. Lebois, J. N. Wilson, P. Halipré et al., “Development of a kinematically focused neutron source with the p(7Li,n)7Be inverse reaction,” Nucl. Instrum. Methods Phys. Res., Sect. A 735, 145–151 (2014).10.1016/j.nima.2013.07.061
    [22]
    J. N. Wilson et al., “The LICORNE neutron source and measurements of prompt γ-rays emitted in fission,” Phys. Procedia 59, 31–36 (2014).10.1016/j.phpro.2014.10.005
    [23]
    M. Okamura, S. Ikeda, T. Kanesue et al., “Demonstration of an intense lithium beam for forward-directed pulsed neutron generation,” Sci. Rep. 12(1), 14016–14111 (2022).10.1038/s41598-022-18270-0
    [24]
    J. R. Vanhoy, N. A. Guardala, and G. A. Glass, “Directed neutron beams from inverse kinematic reactions,” AIP Conf. Proc. 1336, 463–468 (2011).10.1063/1.3586142
    [25]
    P. Liu, T. Y. Liang, D. Wu et al., “Laser-driven collimated neutron sources based on kinematic focusing,” Phys. Rev. Appl. 18(4), 044004 (2022).10.1103/physrevapplied.18.044004
    [26]
    T. Esirkepov, M. Borghesi, S. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92, 175003 (2004).10.1103/physrevlett.92.175003
    [27]
    B. Qiao, M. Zepf, M. Borghesi, and M. Geissler, “Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses,” Phys. Rev. Lett. 102, 145002 (2009).10.1103/physrevlett.102.145002
    [28]
    B. Qiao, S. Kar, M. Geissler, P. Gibbon, M. Zepf, and M. Borghesi, “Dominance of radiation pressure in ion acceleration with linearly polarized pulses at intensities of,” Phys. Rev. Lett. 108, 115002 (2012).10.1103/physrevlett.108.115002
    [29]
    X. Shen, B. Qiao, H. Zhang, S. Kar, C. Zhou, H. Chang, M. Borghesi, and X. He, “Achieving stable radiation pressure acceleration of heavy ions via successive electron replenishment from ionization of a high- material coating,” Phys. Rev. Lett. 118, 204802 (2017).10.1103/physrevlett.118.204802
    [30]
    J. E. Kelly, “Generation IV international forum: A decade of progress through international cooperation,” Prog. Nucl. Energy 77, 240 (2014).10.1016/j.pnucene.2014.02.010
    [31]
    T. Arber, K. Bennett, C. Brady, A. Lawrence- Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [32]
    A. Robinson, M. Zepf, S. Kar, R. Evans, and C. Bellei, “Radiation pressure acceleration of thin foils with circularly polarized laser pulses,” New J. Phys. 10, 013021 (2008).10.1088/1367-2630/10/1/013021
    [33]
    J. Knaster, A. Ibarra, J. Abal et al., “The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European–Japanese project towards a Li(d,xn) fusion relevant neutron source,” Nucl. Fusion 55(8), 086003 (2015).10.1088/0029-5515/55/8/086003
    [34]
    R. Fujii, Y. Imahori, M. Nakakmura et al., “Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium,” AIP Conf. Proc. 1509(1), 162–170 (2012).10.1063/1.4773960
    [35]
    T. Furukawa, Y. Hirakawa, H. Kondo et al., “Chemical reaction of lithium with room temperature atmosphere of various humidities,” Fusion Eng. Des. 98–99, 2138–2141 (2015).10.1016/j.fusengdes.2014.11.019
    [36]
    H. Chen, Y. Yang, D. T. Boyle et al., “Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries,” Nat. Energy 6(8), 790–798 (2021).10.1038/s41560-021-00833-6
    [37]
    I. Prencipe, J. Fuchs, S. Pascarelli et al., High Power Laser Sci. Eng. 5, e17 (2017).10.1017/hpl.2017.18
    [38]
    F. P. Condamine, N. Jourdain, J.-C. Hernandez et al., “High-repetition rate solid target delivery system for PW-class laser–matter interaction at ELI Beamlines,” Rev. Sci. Instrum. 92(6), 063504 (2021).10.1063/5.0053281
    [39]
    S. Wilks, A. Langdon, T. Cowan, M. Roth, M. Singh, S. Hatchett, M. Key, D. Pennington, A. MacKinnon, and R. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542 (2001).10.1063/1.1333697
    [40]
    J. Fuchs, P. Antici, E. D’Humi’eres, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48 (2006).10.1038/nphys199
    [41]
    A. McIlvenny, D. Doria, L. Romagnani et al., “Selective ion acceleration by intense radiation pressure,” Phys. Rev. Lett. 127, 194801 (2021).10.1103/physrevlett.127.194801
    [42]
    I. W. Choi, C. Jeon, S. G. Lee et al., “Highly efficient double plasma mirror producing ultrahigh-contrast multi-petawatt laser pulses,” Opt. Lett. 45(23), 6342–6345 (2020).10.1364/ol.409749
    [43]
    N. Chrysanthopoulou, P. Savva, M. Varvayanni, and N. Catsaros, “Compilation of existing neutron screen technology,” Sci. Technol. Nucl. Install. 2014, 395795 (n.d.).10.1155/2014/395795
    [44]
    H. Takeshita et al., “Neutron production from thick LiF, C, Si, Ni, Mo, and Ta targets bombarded by 13.4-MeV deuterons,” EPJ Web Conf. 239, 01018 (2020).10.1051/epjconf/202023901018
    [45]
    J. N. Wilson, D. Thisse, M. Lebois et al., “Angular momentum generation in nuclear fission,” Nature 590(7847), 566–570 (2021).10.1038/s41586-021-03304-w
    [46]
    N. Colonna, “Generation IV nuclear energy systems and the need of accurate nuclear data,” J. Phys.: Conf. Ser. 168, 012024 (2009).10.1088/1742-6596/168/1/012024
    [47]
    R. O. Nelson, S. C. Vogel, J. F. Hunter et al., “Neutron imaging at LANSCE—From cold to ultrafast,” J. Imaging 4(2), 45 (2018).10.3390/jimaging4020045
    [48]
    G. Chen and R. C. Lanza, “Fast neutron resonance radiography for elemental imaging: Theory and applications,” IEEE Trans. Nucl. Sci. 49(4), 1919–1924 (2002).10.1109/TNS.2002.801696
    [49]
    Y. Abe, A. Nakao, Y. Arikawa et al., “Predictive capability of material screening by fast neutron activation analysis using laser-driven neutron sources,” Rev. Sci. Instrum. 93(9), 093523 (2022).10.1063/5.0099217
    [50]
    A. Iwamoto and R. Kodama, “Conceptual design of a subcritical research reactor for inertial fusion energy with the J-EPoCH facility,” High Energy Density Phys. 36, 100842 (2020).10.1016/j.hedp.2020.100842
    [51]
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).10.1016/j.nimb.2010.02.091
    [52]
    H. W. Lewis, “Multiple scattering in an infinite medium,” Phys. Rev. 78, 526 (1950).10.1103/physrev.78.526
    [53]
    M. B. Chadwick, M. Herman, P. Obložinský et al., “ENDF/B-VII.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data,” Nucl. Data Sheets 112, 2887 (2011).10.1016/j.nds.2011.11.002
    [54]
    S. Nakayama, O. Iwamoto, Y. Watanabe, and K. Ogata, “JENDL/DEU-2020: Deuteron nuclear data library for design studies of accelerator-based neutron sources,” J. Nucl. Sci. Technol. 58, 805 (2021).10.1080/00223131.2020.1870010
    [55]
    J. Dave, C. Gould, S. Wender, and S. Shafroth, “The 1H(7Li,n)7Be reaction as an intense MeV neutron source,” Nucl. Instrum. Methods Phys. Res. 200, 285 (1982).10.1016/0167-5087(82)90444-6
    [56]
    H. Liskien and A. Paulsen, “Neutron production cross sections and energies for the reactions 7Li(p,n)7Be and 7Li (p,n)7Be,” At. Data Nucl. Data Tables 15, 57 (1975).10.1016/0092-640x(75)90004-2
    [57]
    W. Prestwich, W. Prestwich, and F. McNeill, “Lithium target performance evaluation for low-energy accelerator-based in vivo measurements using gamma spectroscopy,” Appl. Radiat. Isot. 58, 321 (2003).10.1016/s0969-8043(02)00346-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (82) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return