Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
Zhang Huan, Yang Yutong, Yang Weimin, Guan Zanyang, Duan Xiaoxi, Yang Mengsheng, Liu Yonggang, Shen Jingxiang, Batani Katarzyna, Singappuli Diluka, Lan Ke, Li Yongsheng, Huo Wenyi, Liu Hao, Li Yulong, Yang Dong, Li Sanwei, Wang Zhebin, Yang Jiamin, Zhao Zongqing, Zhang Weiyan, Sun Liang, Kang Wei, Batani Dimitri. Equation of state for boron nitride along the principal Hugoniot to 16 Mbar[J]. Matter and Radiation at Extremes, 2024, 9(5): 057403. doi: 10.1063/5.0206889
Citation: Zhang Huan, Yang Yutong, Yang Weimin, Guan Zanyang, Duan Xiaoxi, Yang Mengsheng, Liu Yonggang, Shen Jingxiang, Batani Katarzyna, Singappuli Diluka, Lan Ke, Li Yongsheng, Huo Wenyi, Liu Hao, Li Yulong, Yang Dong, Li Sanwei, Wang Zhebin, Yang Jiamin, Zhao Zongqing, Zhang Weiyan, Sun Liang, Kang Wei, Batani Dimitri. Equation of state for boron nitride along the principal Hugoniot to 16 Mbar[J]. Matter and Radiation at Extremes, 2024, 9(5): 057403. doi: 10.1063/5.0206889

Equation of state for boron nitride along the principal Hugoniot to 16 Mbar

doi: 10.1063/5.0206889
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: sunliangyp@outlook.com; weikang@pku.edu.cn; and dimitri.batani@u-bordeaux.fr
  • Received Date: 2024-03-04
  • Accepted Date: 2024-06-12
  • Available Online: 2024-09-01
  • Publish Date: 2024-09-01
  • The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics, but they are poorly understood owing to the challenges of performing experiments and realizing ab initio calculations. Here, we report the first shock Hugoniot data on hexagonal boron nitride at pressures of 5–16 Mbar, using hohlraum-driven shock waves at the SGIII-p laser facility in China. Our density functional theory molecular dynamics calculations closely match experimental data, validating the equations of state for modeling the shock response of boron nitride and filling a crucial gap in the knowledge of boron nitride properties in the region of multi-Mbar pressures and eV temperatures. The results presented here provide fundamental insights into boron nitride under the extreme conditions relevant to inertial confinement fusion, hydrogen–boron fusion, and high-energy-density physics.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Huan Zhang: Investigation (equal); Writing – original draft (equal). Yutong Yang: Investigation (equal); Writing – original draft (equal). Weimin Yang: Investigation (supporting). Zanyang Guan: Investigation (supporting). Xiaoxi Duan: Data curation (equal); Investigation (equal). Mengsheng Yang: Data curation (equal); Investigation (supporting). Yonggang Liu: Data curation (supporting); Investigation (supporting). Jingxiang Shen: Investigation (supporting). Katarzyna Batani: Data curation (supporting); Formal analysis (supporting); Investigation (supporting). Diluka Singappuli: Data curation (equal). Ke Lan: Investigation (supporting); Writing – review & editing (supporting). Yongsheng Li: Data curation (supporting); Investigation (supporting). Wenyi Huo: Conceptualization (supporting); Data curation (supporting); Investigation (supporting). Hao Liu: Conceptualization (supporting); Investigation (supporting). Yulong Li: Conceptualization (supporting); Investigation (supporting). Dong Yang: Investigation (supporting). Sanwei Li: Formal analysis (supporting); Validation (supporting). Zhebin Wang: Investigation (supporting). Jiamin Yang: Formal analysis (supporting); Investigation (supporting). Zongqing Zhao: Formal analysis (supporting); Investigation (supporting); Project administration (supporting). Weiyan Zhang: Investigation (supporting); Project administration (supporting); Supervision (supporting). Liang Sun: Conceptualization (equal); Investigation (equal); Writing – review & editing (equal). Wei Kang: Conceptualization (equal); Investigation (equal); Writing – review & editing (equal). Dimitri Batani: Conceptualization (equal); Investigation (equal); Writing – original draft (equal); Writing – review & editing (equal).
    Author Contributions
    W.K., L.S., and D.B. conceived the work; H.Z., L.S., Z.-Y.G., W.-M.Y., Y.-G.L., S.-W.L., H.L., X.-X.D., Z.-B.W., D.Y., J.-M.Y., and D.B. performed the experiments; M.-S.Y. prepared the samples; Y.-T.Y., J.-X.S., and W.K. performed calculations; H.Z., K.B., and D.S. analyzed the data with assistance from D.B. and Z.-B.W.; K.B., K.L., Y.-S.L., W.-Y.H., J.-M.Y., Z.-Q.Z, and W.-Y.Z. contributed to the interpretation of the data; and Z.H. and Y.-T.Y. wrote the paper. All coauthors commented critically on the manuscript.
    H.Z. and Y.Y. contributed equally to this work.
    The source data are provided and shown in the figures and tables. Additional data are available from the corresponding author upon request.
  • loading
  • [1]
    D. K. Duncan, F. Primas, L. M. Rebull, A. M. Boesgaard, C. P. Deliyannis et al., “The evolution of galactic boron and the production site of the light elements,” Astrophys. J. 488, 338 (1997).10.1086/304683
    [2]
    J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher et al., “Origin of the heaviest elements: The rapid neutron-capture process,” Rev. Mod. Phys. 93, 015002 (2021).10.1103/revmodphys.93.015002
    [3]
    A. M. Boesgaard, “The light elements lithium, beryllium and boron,” in Origin and Evolution of the Elements, edited by A. McWilliam and M. Rauch (Cambridge University Press, Cambridge, 2004), pp. 117.
    [4]
    M. Gatu Johnson, D. T. Casey, M. Hohenberger, A. B. Zylstra, A. Bacher et al., “Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments,” Phys. Plasmas 25, 056303 (2018).10.1063/1.5017746
    [5]
    M. Gatu Johnson, A. B. Zylstra, A. Bacher, C. R. Brune, D. T. Casey et al., “Development of an inertial confinement fusion platform to study charged-particle-producing nuclear reactions relevant to nuclear astrophysics,” Phys. Plasmas 24, 041407 (2017).10.1063/1.4979186
    [6]
    D. Batani, D. Margarone, and F. Belloni, “Advances in the study of laser-driven proton–boron fusion,” Laser Part. Beams 2023, e5, part of Special Issue: For an extended presentation of recent developments in proton–boron fusion research.10.1155/2023/9824024
    [7]
    M.-S. Liu, H.-S. Xie, Y.-M. Wang, J.-Q. Dong, K.-M. Feng et al., “ENN’s roadmap for proton-boron fusion based on spherical torus,” Phys. Plasmas 31, 062507 (2024).10.1063/5.0199112
    [8]
    R. M. Magee, K. Ogawa, T. Tajima, I. Allfrey, H. Gota et al., “First measurements of p11B fusion in a magnetically confined plasma,” Nat. Commun. 14, 955 (2023).10.1038/s41467-023-36655-1
    [9]
    K. Batani, D. Batani, X. T. He, and K. Shigemori, “Recent progress in matter in extreme states created by laser,” Matter Radiat. Extremes 7, 013001 (2021), part of Special Issue: For an extended presentation of recent developments in research on matter under extreme conditions, see the special issue of Matter and Radiation at Extremes.10.1063/5.0078895
    [10]
    H.-K. Mao, B. Chen, H. Gou, K. Li, J. Liu, et al., “2022 HP special volume: Interdisciplinary high pressure science and technology,” Matter Radiat. Extremes 8, 063001 (2023).10.1063/5.0181097
    [11]
    H.-K. Mao, “Hydrogen and related matter in the pressure dimension,” Matter Radiat. Extremes 7, 063001 (2022).10.1063/5.0130627
    [12]
    E. Knittle, R. M. Wentzcovitch, R. Jeanloz, and M. L. Cohen, “Experimental and theoretical equation of state of cubic boron nitride,” Nature 337, 349–352 (1989).10.1038/337349a0
    [13]
    A. F. Goncharov, J. C. Crowhurst, J. K. Dewhurst, S. Sharma, C. Sanloup et al., “Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale,” Phys. Rev. B 75, 224114 (2007).10.1103/physrevb.75.224114
    [14]
    V. L. Solozhenko, D. Häusermann, M. Mezouar, and M. Kunz, “Equation of state of wurtzitic boron nitride to 66 GPa,” Appl. Phys. Lett. 72, 1691–1693 (1998).10.1063/1.121186
    [15]
    [16]
    S. P. Marsh, LASL Shock Hugoniot Data (University of California Press, 1980).
    [17]
    H. Zhang, D. Kang, C. Wu, L. Hao, H. Shen et al., “Semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion,” Matter Radiat. Extremes 9, 015601 (2023).10.1063/5.0150343
    [18]
    Y.-H. Chen, Z. Li, H. Cao, K. Pan, S. Li et al., “Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums,” Matter Radiat. Extremes 7, 065901 (2022).10.1063/5.0102447
    [19]
    A. Tentori, A. Colaïtis, and D. Batani, “3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part I,” Matter Radiat. Extremes 7, 065902 (2022).10.1063/5.0103631
    [20]
    H. D. Whitley, G. E. Kemp, C. B. Yeamans, Z. B. Walters, B. E. Blue et al., “Comparison of ablators for the polar direct drive exploding pusher platform,” High Energy Density Phys. 38, 100928 (2021).10.1016/j.hedp.2021.100928
    [21]
    A. C. Hayes-Sterbenz, G. M. Hale, G. Jungman, and M. W. Paris, Probing the Physics of Burning DT Capsules Using Gamma-Ray Diagnostics (Los Alamos National Lab (LANL), Los Alamos, NM, 2015).
    [22]
    H. Abu-Shawareb et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).10.1103/physrevlett.129.075001
    [23]
    S. Zhang, A. Lazicki, B. Militzer, L. H. Yang, K. Caspersen et al., “Equation of state of boron nitride combining computation, modeling, and experiment,” Phys. Rev. B 99, 165103 (2019).10.1103/physrevb.99.165103
    [24]
    S. Zhang, B. Militzer, M. C. Gregor, K. Caspersen, L. H. Yang et al., “Theoretical and experimental investigation of the equation of state of boron plasmas,” Phys. Rev. E 98, 023205 (2018).10.1103/physreve.98.023205
    [25]
    D. E. Fratanduono, P. M. Celliers, D. G. Braun, P. A. Sterne, S. Hamel et al., “Equation of state, adiabatic sound speed, and Gruneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa,” Phys. Rev. B 94, 184107 (2016).10.1103/physrevb.94.184107
    [26]
    S. Zhang, M. C. Marshall, L. H. Yang, P. A. Sterne, B. Militzer et al., “Benchmarking boron carbide equation of state using computation and experiment,” Phys. Rev. E 102, 053203 (2020).10.1103/physreve.102.053203
    [27]
    B. Wilson, V. Sonnad, P. Sterne, and W. Isaacs, “Purgatorio—A new implementation of the Inferno algorithm,” J. Quant. Spectrosc. Radiat. Transfer 99, 658–679 (2006).10.1016/j.jqsrt.2005.05.053
    [28]
    T. Gong, L. Hao, Z. Li, D. Yang, S. Li et al., “Recent research progress of laser plasma interactions in Shenguang laser facilities,” Matter Radiat. Extremes 4, 055202 (2019).10.1063/1.5092446
    [29]
    K. Lan, “Dream fusion in octahedral spherical hohlraum,” Matter Radiat. Extremes 7, 055701 (2022).10.1063/5.0103362
    [30]
    Z. Li, X. Jiang, S. Liu, T. Huang, J. Zheng et al., “A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV,” Rev. Sci. Instrum. 81, 073504 (2010).10.1063/1.3460269
    [31]
    Z. Li, X. Zhu, X. Jiang, S. Liu, J. Zheng et al., “Note: Continuing improvements on the novel flat-response x-ray detector,” Rev. Sci. Instrum. 82, 106106 (2011).10.1063/1.3657158
    [32]
    W. Liu, X. Duan, S. Jiang, Z. Wang, L. Sun et al., “Laser-driven shock compression of gold foam in the terapascal pressure range,” Phys. Plasmas 25, 062707 (2018).10.1063/1.5026623
    [33]
    P. Wang, C. Zhang, S. Jiang, X. Duan, H. Zhang et al., “Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF,” Matter Radiat. Extremes 6, 035902 (2021).10.1063/5.0039062
    [34]
    D. E. Fratanduono, D. H. Munro, P. M. Celliers, and G. W. Collins, “Hugoniot experiments with unsteady waves,” J. Appl. Phys. 116, 033517 (2014).10.1063/1.4890014
    [35]
    P. M. Celliers and M. Millot, “Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences,” Rev. Sci. Instrum. 94, 011101 (2023).10.1063/5.0123439
    [36]
    J. D. Kilkenny, M. D. Cable, C. A. Clower, B. A. Hammel, V. P. Karpenko et al., “Diagnostic systems for the national ignition facility (NIF) (invited),” Rev. Sci. Instrum. 66, 288–295 (1995).10.1063/1.1146387
    [37]
    F. Wang, S. Jiang, Y. Ding, S. Liu, J. Yang et al., “Recent diagnostic developments at the 100 kJ-level laser facility in China,” Matter Radiat. Extremes 5, 035201 (2020).10.1063/1.5129726
    [38]
    J. E. Miller, T. R. Boehly, A. Melchior, D. D. Meyerhofer, P. M. Celliers et al., “Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA,” Rev. Sci. Instrum. 78, 034903 (2007).10.1063/1.2712189
    [39]
    D. G. Hicks, T. R. Boehly, P. M. Celliers, J. H. Eggert, E. Vianello et al., “Shock compression of quartz in the high-pressure fluid regime,” Phys. Plasmas 12, 082702 (2005).10.1063/1.2009528
    [40]
    W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).10.1103/physrev.140.a1133
    [41]
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864–B871 (1964).10.1103/physrev.136.b864
    [42]
    N. de Koker, “Melting of cubic boron nitride at extreme pressures,” J. Phys.: Condens.Matter 24, 055401 (2012).10.1088/0953-8984/24/5/055401
    [43]
    F. R. Corrigan and F. P. Bundy, “Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures,” J. Chem. Phys. 63, 3812–3820 (1975).10.1063/1.431874
    [44]
    V. L. Solozhenko, “Boron nitride phase diagram. State of the art,” High Pressure Res. 13, 199–214 (1995).10.1080/08957959508200884
    [45]
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys, Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
    [46]
    J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 13244–13249 (1992).10.1103/physrevb.45.13244
    [47]
    N. A. W. Holzwarth, A. R. Tackett, and G. E. Matthews, “A projector augmented wave (PAW) code for electronic structure calculations, Part I: Atompaw for generating atom-centered functions,” Comput. Phys. Commun. 135, 329–347 (2001).10.1016/s0010-4655(00)00244-7
    [48]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).10.1103/physrevb.50.17953
    [49]
    S. Zhang, H. Wang, W. Kang, P. Zhang, and X. T. He, “Extended application of Kohn–Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas,” Phys. Plasmas 23, 042707 (2016).10.1063/1.4947212
    [50]
    C. Gao, S. Zhang, W. Kang, C. Wang, P. Zhang, and X. T. He, “Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure,” Phys. Rev. B 94, 205115 (2016).10.1103/physrevb.94.205115
    [51]
    X. Liu, X. Zhang, C. Gao, S. Zhang, C. Wang et al., “Equations of state of poly-α-methylstyrene and polystyrene: First-principles calculations versus precision measurements,” Phys. Rev. B 103, 174111 (2021).10.1103/physrevb.103.174111
    [52]
    C. Gao, X. Liu, S. Zhang, W. Kang, P. Zhang, and X. T. He, “Consistent wide-range equation of state of silicon by a unified first-principles method,” Phys. Rev. B 107, 165150 (2023).10.1103/physrevb.107.165150
    [53]
    D. Kang, Y. Hou, Q. Zeng, and J. Dai, “Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region,” Matter Radiat. Extremes 5, 055401 (2020).10.1063/5.0008231
    [54]
    H. Y. Sun, D. Kang, Y. Hou, and J. Y. Dai, “Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics,” Matter Radiat. Extremes 2, 287–295 (2017).10.1016/j.mre.2017.09.001
    [55]
    [56]
    P. M. Celliers, G. W. Collins, D. G. Hicks, and J. H. Eggert, “Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al,” J. Appl. Phys. 98, 113529 (2005).10.1063/1.2140077
    [57]
    S. Hamel, L. X. Benedict, P. M. Celliers, M. A. Barrios, T. R. Boehly et al., “Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements,” Phys. Rev. B 86, 094113 (2012).10.1103/physrevb.86.094113
    [58]
    J. H. Eggert, D. G. Hicks, P. M. Celliers, D. K. Bradley, R. S. McWilliams et al., Nat. Phys. 6, 40–43 (2010).10.1038/nphys1438
    [59]
    S. Makarov, S. Dyachkov, T. Pikuz, K. Katagiri, H. Nakamura et al., “Direct imaging of shock wave splitting in diamond at Mbar pressure,” Matter Radiat. Extremes 8, 066601 (2023).10.1063/5.0156681
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (35) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return