Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
Geng Xuesong, Xu Tongjun, Zhang Lingang, Kostyukov Igor, Pukhov Alexander, Shen Baifei, Ji Liangliang. Compact laser wakefield acceleration toward high energy with micro-plasma parabola[J]. Matter and Radiation at Extremes, 2024, 9(6): 067203. doi: 10.1063/5.0202964
Citation: Geng Xuesong, Xu Tongjun, Zhang Lingang, Kostyukov Igor, Pukhov Alexander, Shen Baifei, Ji Liangliang. Compact laser wakefield acceleration toward high energy with micro-plasma parabola[J]. Matter and Radiation at Extremes, 2024, 9(6): 067203. doi: 10.1063/5.0202964

Compact laser wakefield acceleration toward high energy with micro-plasma parabola

doi: 10.1063/5.0202964
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jill@siom.ac.cn
  • Received Date: 2024-02-08
  • Accepted Date: 2024-08-22
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • Laser wakefield acceleration (LWFA) promises compact accelerators toward the high-energy frontier. However, the approach to the 100 GeV milestone faces the obstacle of the long focal length required for optimal acceleration with high-power lasers, which reaches hundreds of meters for 10–100 PW lasers. The long focal length originates from optimal laser intensity required to avoid nonlinear effects and hence large spot size and Rayleigh length. We propose a “telescope” geometry in which a micro-plasma parabola (MPP) is coupled with a short-focal-length off-axis parabola, minimizing the focal length to the meter range for LWFA under optimized conditions driven by lasers beyond 1 PW. Full-dimensional kinetic simulations demonstrate the generation of a 9 GeV electron bunch within only 1 m optical length—only one-tenth of that required with the conventional approach with the same performance. The proposed MPP provides a basis for the construction of compact LWFAs toward single-stage 100 GeV acceleration with 100 PW class lasers.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    Xuesong Geng: Conceptualization (equal); Funding acquisition (equal); Methodology (equal); Visualization (equal); Writing – original draft (equal). Tongjun Xu: Investigation (supporting). Lingang Zhang: Investigation (supporting). Igor Kostyukov: Writing – review & editing (supporting). Alexander Pukhov: Writing – review & editing (supporting). Baifei Shen: Writing – review & editing (supporting). Liangliang Ji: Conceptualization (equal); Funding acquisition (equal); Supervision (equal); Writing – review & editing (equal).
    The data taht support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.08335 and can be reproduced using the parameters described in the article.
  • loading
  • [1]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267
    [2]
    A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, Cs. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, and W. P. Leemans, “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122, 084801 (2019).10.1103/physrevlett.122.084801
    [3]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [4]
    W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.-Accel. Beams 10, 061301 (2007).10.1103/physrevstab.10.061301
    [5]
    J. Luo, M. Chen, W. Y. Wu, S. M. Weng, Z. M. Sheng, C. B. Schroeder, D. A. Jaroszynski, E. Esarey, W. P. Leemans, W. B. Mori, and J. Zhang, “Multistage coupling of laser-wakefield accelerators with curved plasma channels,” Phys. Rev. Lett. 120, 154801 (2018).10.1103/physrevlett.120.154801
    [6]
    A. Pukhov and J. Meyer-ter-Vehn, “Laser wake field acceleration: The highly non-linear broken-wave regime,” Appl. Phys. B: Lasers Opt. 74, 355–361 (2002).10.1007/s003400200795
    [7]
    W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, “Nonlinear theory for relativistic plasma wakefields in the blowout regime,” Phys. Rev. Lett. 96, 165002 (2006).10.1103/physrevlett.96.165002
    [8]
    A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, and W. P. Leemans, “Tunable laser plasma accelerator based on longitudinal density tailoring,” Nat. Phys. 7, 862–866 (2011).10.1038/nphys2071
    [9]
    S. Steinke, J. van Tilborg, C. Benedetti, C. G. R. Geddes, C. B. Schroeder, J. Daniels, K. K. Swanson, A. J. Gonsalves, K. Nakamura, N. H. Matlis, B. H. Shaw, E. Esarey, and W. P. Leemans, “Multistage coupling of independent laser-plasma accelerators,” Nature 530, 190–193 (2016).10.1038/nature16525
    [10]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [11]
    R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and J.-L. Vay, “A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm,” Comput. Phys. Commun. 203, 66–82 (2016).10.1016/j.cpc.2016.02.007
    [12]
    M. Lamač, K. Mima, J. Nejdl, U. Chaulagain, and S. V. Bulanov, “Anomalous relativistic emission from self-modulated plasma mirrors,” Phys. Rev. Lett. 131, 205001 (2023).10.1103/physrevlett.131.205001
    [13]
    A. F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laser–plasma interaction using Fourier decomposition,” J. Comput. Phys. 228, 1803–1814 (2009).10.1016/j.jcp.2008.11.017
    [14]
    C. G. Durfee and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).10.1103/physrevlett.71.2409
    [15]
    W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2, 696–699 (2006).10.1038/nphys418
    [16]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/revmodphys.81.1229
    [17]
    H. Vincenti, “Achieving extreme light intensities using optically curved relativistic plasma mirrors,” Phys. Rev. Lett. 123, 105001 (2019).10.1103/physrevlett.123.105001
    [18]
    U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81, 445–479 (2009).10.1103/revmodphys.81.445
    [19]
    S. Ghimire and D. A. Reis, “High-harmonic generation from solids,” Nat. Phys. 15, 10–16 (2019).10.1038/s41567-018-0315-5
    [20]
    P. Chen, Z. Pang, and Z.-Y. Chen, “Isolated attosecond pulses from Airy-beam-driven relativistic plasma mirrors,” Phys. Rev. A 109, 013522 (2024).10.1103/physreva.109.013522
    [21]
    N. F. Beier and F. Dollar, “Two-color high-harmonic generation from relativistic plasma mirrors,” Phys. Rev. E 108, 015201 (2023).10.1103/physreve.108.015201
    [22]
    L. Chopineau, G. Blaclard, A. Denoeud, H. Vincenti, F. Quéré, and S. Haessler, “Sub-laser-cycle control of relativistic plasma mirrors,” Phys. Rev. Res. 4, L012030 (2022).10.1103/physrevresearch.4.l012030
    [23]
    X. Shen, A. Pukhov, and B. Qiao, “High-flux bright x-ray source from femtosecond laser-irradiated microtapes,” Commun. Phys. 7, 84 (2024).10.1038/s42005-024-01575-z
    [24]
    J. H. Easter, J. A. Nees, B. X. Hou, A. Mordovanakis, G. Mourou, A. G. R. Thomas, and K. Krushelnick, “Angular emission and polarization dependence of harmonics from laser–solid interactions,” New J. Phys. 15, 025035 (2013).10.1088/1367-2630/15/2/025035
    [25]
    H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin, and F. Quéré, “Optical properties of relativistic plasma mirrors,” Nat. Commun. 5, 3403 (2014).10.1038/ncomms4403
    [26]
    C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).10.1038/nphys595
    [27]
    K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308–311 (2012).10.1038/nphoton.2012.82
    [28]
    M. Nakatsutsumi, A. Kon, S. Buffechoux, P. Audebert, J. Fuchs, and R. Kodama, “Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity,” Opt. Lett. 35, 2314 (2010).10.1364/ol.35.002314
    [29]
    Y. Arikawa, S. Kojima, A. Morace, S. Sakata, T. Gawa, Y. Taguchi, Y. Abe, Z. Zhang, X. Vaisseau, S. H. Lee, K. Matsuo, S. Tosaki, M. Hata, K. Kawabata, Y. Kawakami, M. Ishida, K. Tsuji, S. Matsuo, N. Morio, T. Kawasaki, S. Tokita, Y. Nakata, T. Jitsuno, N. Miyanaga, J. Kawanaka, H. Nagatomo, A. Yogo, M. Nakai, H. Nishimura, H. Shiraga, S. Fujioka, H. Azechi, A. Sunahara, T. Johzaki, T. Ozaki, H. Sakagami, A. Sagisaka, K. Ogura, A. S. Pirozhkov, M. Nishikino, K. Kondo, S. Inoue, K. Teramoto, M. Hashida, and S. Sakabe, “Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror,” Appl. Opt. 55, 6850 (2016).10.1364/ao.55.006850
    [30]
    R. Wilson, M. King, R. J. Gray, D. C. Carroll, R. J. Dance, C. Armstrong, S. J. Hawkes, R. J. Clarke, D. J. Robertson, D. Neely, and P. McKenna, “Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities,” Phys. Plasmas 23, 033106 (2016).10.1063/1.4943200
    [31]
    M. Nakatsutsumi, Y. Sentoku, A. Korzhimanov, S. N. Chen, S. Buffechoux, A. Kon, B. Atherton, P. Audebert, M. Geissel, L. Hurd, M. Kimmel, P. Rambo, M. Schollmeier, J. Schwarz, M. Starodubtsev, L. Gremillet, R. Kodama, and J. Fuchs, “Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons,” Nat. Commun. 9, 280 (2018).10.1038/s41467-017-02436-w
    [32]
    F. Quéré and H. Vincenti, “Reflecting petawatt lasers off relativistic plasma mirrors: A realistic path to the Schwinger limit,” High Power Laser Sci. Eng. 9, e6 (2021).10.1017/hpl.2020.46
    [33]
    G. G. Scott, V. Bagnoud, C. Brabetz, R. J. Clarke, J. S. Green, R. I. Heathcote, H. W. Powell, B. Zielbauer, T. D. Arber, P. McKenna, and D. Neely, “Optimization of plasma mirror reflectivity and optical quality using double laser pulses,” New J. Phys. 17, 033027 (2015).10.1088/1367-2630/17/3/033027
    [34]
    T. Sokollik, S. Shiraishi, J. Osterhoff, E. Evans, A. J. Gonsalves, K. Nakamura, J. van Tilborg, C. Lin, C. Toth, W. P. Leemans et al., “Tape‐drive based plasma mirror,” AIP Conf. Proc. 1299, 233–237 (2010).10.1063/1.3520320
    [35]
    B. H. Shaw, S. Steinke, J. van Tilborg, and W. P. Leemans, “Reflectance characterization of tape-based plasma mirrors,” Phys. Plasmas 23, 063118 (2016).10.1063/1.4954242
    [36]
    H. Gao, Y. Hu, Y. Xuan, J. Li, Y. Yang, R. V. Martinez, C. Li, J. Luo, M. Qi, and G. J. Cheng, “Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures,” Science 346, 1352–1356 (2014).10.1126/science.1260139
    [37]
    P. Hickson, B. K. Gibson, and D. W. Hogg, “Large astronomical liquid mirrors,” PASP 105, 501 (1993).10.1086/133184
    [38]
    O. N. Stavroudis and A. J. Ames, “Confocal prolate spheroids in an off-axis system,” J. Opt. Soc. Am. A 9, 2083 (1992).10.1364/josaa.9.002083
    [39]
    O. O. Versolato, J. Sheil, S. Witte, W. Ubachs, and R. Hoekstra, “Microdroplet-tin plasma sources of EUV radiation driven by solid-state-lasers (Topical Review),” J. Opt. 24, 054014 (2022).10.1088/2040-8986/ac5a7e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (20) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return