Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
Xu L., Huang T. W., Jiang K., Wu C. N., Peng H., Chen P., Li R., Zhuo H. B., Zhou C. T.. Efficient guiding and focusing of intense laser pulse using periodic thin slits[J]. Matter and Radiation at Extremes, 2024, 9(4): 047203. doi: 10.1063/5.0192396
Citation: Xu L., Huang T. W., Jiang K., Wu C. N., Peng H., Chen P., Li R., Zhuo H. B., Zhou C. T.. Efficient guiding and focusing of intense laser pulse using periodic thin slits[J]. Matter and Radiation at Extremes, 2024, 9(4): 047203. doi: 10.1063/5.0192396

Efficient guiding and focusing of intense laser pulse using periodic thin slits

doi: 10.1063/5.0192396
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: taiwu.huang@sztu.edu.cn
  • Received Date: 2023-12-19
  • Accepted Date: 2024-04-06
  • Available Online: 2024-07-01
  • Publish Date: 2024-07-01
  • Slits have been widely used in laser–plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams. Here, we propose and demonstrate that periodic thin slits can be regarded as a new breed of optical elements for efficient focusing and guiding of intense laser pulse. The fundamental physics of intense laser interaction with thin slits is studied, and it is revealed that relativistic effects can lead to enhanced laser focusing far beyond the pure diffractive focusing regime. In addition, the interaction of an intense laser pulse with periodic thin slits makes it feasible to achieve multifold enhancement in both laser intensity and energy transfer efficiency compared with conventional waveguides. These results provide a novel method for manipulating ultra-intense laser pulses and should be of interest for many laser-based applications.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    L. Xu: Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Validation (lead); Visualization (lead); Writing – original draft (lead); Writing – review & editing (equal). T. W. Huang: Conceptualization (lead); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Supervision (lead); Validation (equal); Writing – original draft (equal); Writing – review & editing (lead). K. Jiang: Formal analysis (equal); Investigation (equal); Software (equal); Visualization (equal); Writing – review & editing (equal). C. N. Wu: Data curation (equal); Formal analysis (equal); Methodology (equal); Software (equal); Validation (equal); Writing – review & editing (equal). H. Peng: Data curation (equal); Formal analysis (equal); Methodology (equal); Validation (equal); Visualization (equal). P. Chen: Data curation (equal); Formal analysis (equal); Software (equal); Visualization (equal). R. Li: Formal analysis (equal); Methodology (equal); Validation (equal); Visualization (equal). H. B. Zhuo: Methodology (equal); Resources (equal); Software (equal); Writing – review & editing (equal). C. T. Zhou: Funding acquisition (equal); Project administration (equal); Resources (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    G. A. Mourou, “Nobel Lecture: Extreme light physics and application,” Rev. Mod. Phys. 91, 030501 (2019).10.1103/revmodphys.91.030501
    [2]
    G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309 (2006).10.1103/revmodphys.78.309
    [3]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
    [4]
    C. Riconda and S. Weber, “Plasma optics: A perspective for high-power coherent light generation and manipulation,” Matter Radiat. Extremes 8, 023001 (2023).10.1063/5.0138996
    [5]
    V. M. Malkin, G. Shvets, and N. J. Fisch, “Fast compression of laser beams to highly overcritical powers,” Phys. Rev. Lett. 82, 4448 (1999).10.1103/physrevlett.82.4448
    [6]
    Y. Ping, W. Cheng, S. Suckewer, D. S. Clark, and N. J. Fisch, “Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma,” Phys. Rev. Lett. 92, 175007 (2004).10.1103/physrevlett.92.175007
    [7]
    A. Andreev, C. Riconda, V. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13, 053110 (2006).10.1063/1.2201896
    [8]
    M. R. Edwards, Q. Jia, J. M. Mikhailova, and N. J. Fisch, “Short-pulse amplification by strongly coupled stimulated Brillouin scattering,” Phys. Plasmas 23, 083122 (2016).10.1063/1.4961429
    [9]
    P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas, D. A. Callahan, S. W. Haan, J. D. Salmonson, S. Dixit, D. E. Hinkel et al., “Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer,” Phys. Rev. Lett. 102, 025004 (2009).10.1103/physrevlett.102.025004
    [10]
    S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan et al., “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228 (2010).10.1126/science.1185634
    [11]
    G. Lehmann and K. H. Spatschek, “Transient plasma photonic crystals for high-power lasers,” Phys. Rev. Lett. 116, 225002 (2016).10.1109/plasma.2016.7534317
    [12]
    H. Peng, J.-R. Marquès, L. Lancia, F. Amiranoff, R. L. Berger, S. Weber, and C. Riconda, “Plasma optics in the context of high intensity lasers,” Matter Radiat. Extremes 4, 065401 (2019).10.1063/1.5091550
    [13]
    R. Kirkwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi et al., “Plasma-based beam combiner for very high fluence and energy,” Nat. Phys. 14, 80 (2018).10.1038/nphys4271
    [14]
    C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert et al., “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424 (2007).10.1038/nphys595
    [15]
    J. M. Mikhailova, A. Buck, A. Borot, K. Schmid, C. Sears, G. D. Tsakiris, F. Krausz, and L. Veisz, “Ultra-high-contrast few-cycle pulses for multipetawatt-class laser technology,” Opt. Lett. 36, 3145 (2011).10.1364/ol.36.003145
    [16]
    R. Zagidullin, S. Tietze, M. Zepf, J. W. Wang, and S. Rykovanov, “Density-dependent carrier-envelope phase shift in attosecond pulse generation from relativistically oscillating mirrors,” Matter Radiat. Extremes 8, 064004 (2023).10.1063/5.0155957
    [17]
    Y. H. Kim, H. Kim, S. C. Park, Y. Kwon, K. Yeom, W. Cho, T. Kwon, H. Yun, J. H. Sung, S. K. Lee et al., “High-harmonic generation from a flat liquid-sheet plasma mirror,” Nat. Commun. 14, 2328 (2023).10.1038/s41467-023-38087-3
    [18]
    P. Michel, L. Divol, D. Turnbull, and J. D. Moody, “Dynamic control of the polarization of intense laser beams via optical wave mixing in plasmas,” Phys. Rev. Lett. 113, 205001 (2014).10.1103/physrevlett.113.205001
    [19]
    K. Qu, Q. Jia, and N. J. Fisch, “Plasma q-plate for generation and manipulation of intense optical vortices,” Phys. Rev. E 96, 053207 (2017).10.1103/physreve.96.053207
    [20]
    D. Turnbull, C. Goyon, G. E. Kemp, B. B. Pollock, D. Mariscal, L. Divol, J. S. Ross, S. Patankar, J. D. Moody, and P. Michel, “Refractive index seen by a probe beam interacting with a laser-plasma system,” Phys. Rev. Lett. 118, 015001 (2017).10.1103/physrevlett.118.015001
    [21]
    L. L. Ji, J. Snyder, A. Pukhov, R. R. Freeman, and K. U. Akli, “Towards manipulating relativistic laser pulses with micro-tube plasma lenses,” Sci. Rep. 6, 23256 (2016).10.1038/srep23256
    [22]
    K. Hu and L. Q. Yi, “Intense high-harmonic optical vortices generated from a microplasma waveguide irradiated by a circularly polarized laser pulse,” Phys. Rev. Res. 4, 033095 (2022).10.1103/physrevresearch.4.033095
    [23]
    E. F. J. Bacon, M. King, R. Wilson, T. P. Frazer, R. J. Gray, and P. McKenna, “High order modes of intense second harmonic light produced from a plasma aperture,” Matter Radiat. Extremes 7, 054401 (2022).10.1063/5.0097585
    [24]
    L. Q. Yi, “High-harmonic generation and spin-orbit interaction of light in a relativistic oscillating window,” Phys. Rev. Lett. 126, 134801 (2021).10.1103/physrevlett.126.134801
    [25]
    B. Gonzalez-Izquierdo, R. J. Gray, M. King, R. J. Dance, R. Wilson, J. McCreadie, N. M. H. Butler, R. Capdessus, S. Hawkes, J. S. Green et al., “Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction,” Nat. Phys. 12, 505 (2016).10.1038/nphys3613
    [26]
    B. Gonzalez-Izquierdo, M. King, R. J. Gray, R. Wilson, R. J. Dance, H. Powell, D. A. MacLellan, J. McCreadie, N. M. H. Butler, S. Hawkes et al., “Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency,” Nat. Commun. 7, 12891 (2016).10.1038/ncomms12891
    [27]
    M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon Press, London, 1964).
    [28]
    W. B. Case, E. Sadurni, and W. P. Schleich, “A diffractive mechanism of focusing,” Opt. Express 20, 27253 (2012).10.1364/oe.20.027253
    [29]
    D. Weisman, S. H. Fu, M. Gonçalves, L. Shemer, J. Y. Zhou, W. P. Schleich, and A. Arie, “Diffractive focusing of waves in time and in space,” Phys. Rev. Lett. 118, 154301 (2017).10.1103/physrevlett.118.154301
    [30]
    D. Weisman, C. M. Carmesin, G. G. Rozenman, M. A. Efremov, L. Shemer, W. P. Schleich, and A. Arie, “Diffractive guiding of waves by a periodic array of slits,” Phys. Rev. Lett. 127, 014303 (2021).10.1103/physrevlett.127.014303
    [31]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [32]
    V. Vshivkov, N. Naumova, F. Pegoraro, and S. Bulanov, “Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil,” Phys. Plasmas 5, 2727–2741 (1998).10.1063/1.872961
    [33]
    M. Jirka, O. Klimo, and M. Matys, “Relativistic plasma aperture for laser intensity enhancement,” Phys. Rev. Res. 3, 033175 (2021).10.1103/physrevresearch.3.033175
    [34]
    F. A. Jenkins and H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957).
    [35]
    E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E. 48, 3003 (1993).10.1103/physreve.48.3003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (36) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return