Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
Feng Bingtao, Xie Longjian, Hou Xuyuan, Liu Shucheng, Chen Luyao, Zhao Xinyu, Li Chenyi, Zhou Qiang, Hu Kuo, Liu Zhaodong, Liu Bingbing. A virtual thermometer for ultrahigh-temperature–pressure experiments in a large-volume press[J]. Matter and Radiation at Extremes, 2024, 9(4): 047401. doi: 10.1063/5.0184031
Citation: Feng Bingtao, Xie Longjian, Hou Xuyuan, Liu Shucheng, Chen Luyao, Zhao Xinyu, Li Chenyi, Zhou Qiang, Hu Kuo, Liu Zhaodong, Liu Bingbing. A virtual thermometer for ultrahigh-temperature–pressure experiments in a large-volume press[J]. Matter and Radiation at Extremes, 2024, 9(4): 047401. doi: 10.1063/5.0184031

A virtual thermometer for ultrahigh-temperature–pressure experiments in a large-volume press

doi: 10.1063/5.0184031
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: longjian.xie@ucl.ac.uk; hukuo@jlu.edu.cn; and liu_zhaodong@jlu.edu.cn
  • Received Date: 2023-10-24
  • Accepted Date: 2024-03-12
  • Available Online: 2024-07-01
  • Publish Date: 2024-07-01
  • Ultrahigh-temperature–pressure experiments are crucial for understanding the physical and chemical properties of matter. The recent development of boron-doped diamond (BDD) heaters has made such melting experiments possible in large-volume presses. However, estimates of temperatures above 2600 K and of the temperature distributions inside BDD heaters are not well constrained, owing to the lack of a suitable thermometer. Here, we establish a three-dimensional finite element model as a virtual thermometer to estimate the temperature and temperature field above 2600 K. The advantage of this virtual thermometer over those proposed in previous studies is that it considers both alternating and direct current heating modes, the actual sizes of cell assemblies after compression, the effects of the electrode, thermocouple and anvil, and the heat dissipation by the pressure-transmitting medium. The virtual thermometer reproduces the power–temperature relationships of ultrahigh-temperature–pressure experiments below 2600 K at press loads of 2.8–7.9 MN (∼19 to 28 GPa) within experimental uncertainties. The temperatures above 2600 K predicted by our virtual thermometer are within the uncertainty of those extrapolated from power–temperature relationships below 2600 K. Furthermore, our model shows that the temperature distribution inside a BDD heater (19–26 K/mm along the radial direction and <83 K/mm along the longitudinal direction) is more homogeneous than those inside conventional heaters such as graphite or LaCrO3 heaters (100–200 K/mm). Our study thus provides a reliable virtual thermometer for ultrahigh-temperature experiments using BDD heaters in Earth and material sciences.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Bingtao Feng: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). Longjian Xie: Conceptualization (lead); Investigation (equal); Methodology (equal); Writing – review & editing (lead). Xuyuan Hou: Investigation (equal). Shucheng Liu: Investigation (equal). Luyao Chen: Investigation (equal). Xinyu Zhao: Investigation (equal). Chenyi Li: Investigation (equal). Qiang Zhou: Investigation (equal). Kuo Hu: Investigation (equal); Project administration (equal); Writing – review & editing (equal). Zhaodong Liu: Funding acquisition (equal); Project administration (equal); Supervision (equal); Writing – review & editing (equal). Bingbing Liu: Funding acquisition (equal); Project administration (equal); Supervision (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    T. Ishii, Z. Liu, and T. Katsura, “A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils,” Engineering 5(3), 434–440 (2019).10.1016/j.eng.2019.01.013
    [2]
    D. Yamazaki, E. Ito, T. Yoshino, N. Tsujino, A. Yoneda, H. Gomi, J. Vazhakuttiyakam, M. Sakurai, Y. Zhang, Y. Higo, and Y. Tange, “High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3,” C. R. Geosci. 351(2–3), 253–259 (2019).10.1016/j.crte.2018.07.004
    [3]
    L. Xie, A. Yoneda, D. Yamazaki, G. Manthilake, Y. Higo, Y. Tange, N. Guignot, A. King, M. Scheel, and D. Andrault, “Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification,” Nat. Commun. 11(1), 548 (2020).10.1038/s41467-019-14071-8
    [4]
    L. Xie, A. Yoneda, T. Yoshino, D. Yamazaki, N. Tsujino, Y. Higo, Y. Tange, T. Irifune, T. Shimei, and E. Ito, “Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus,” Rev. Sci. Instrum. 88(9), 093904 (2017).10.1063/1.4993959
    [5]
    A. Yoneda, L. Xie, N. Tsujino, and E. Ito, “Semiconductor diamond heater in the Kawai multianvil apparatus: An innovation to generate the lower mantle geotherm,” High Pressure Res. 34(4), 392–403 (2014).10.1080/08957959.2014.969255
    [6]
    L. Xie, A. Chanyshev, T. Ishii, D. Bondar, K. Nishida, Z. Chen, S. Bhat, R. Farla, Y. Higo, Y. Tange, X. Su, B. Yan, S. Ma, and T. Katsura, “Simultaneous generation of ultrahigh pressure and temperature to 50 GPa and 3300 K in multi-anvil apparatus,” Rev. Sci. Instrum. 92(10), 103902 (2021).10.1063/5.0059279
    [7]
    L. Xie, A. Yoneda, Z. Liu, K. Nishida, and T. Katsura, “Boron-doped diamond synthesized by chemical vapor deposition as a heating element in a multi-anvil apparatus,” High Pressure Res. 40(3), 369–378 (2020).10.1080/08957959.2020.1789618
    [8]
    L. Xie, “Machinable boron-doped diamond as a practical heating element in multi-anvil apparatuses,” Rev. Sci. Instrum. 92(2), 023901 (2021).10.1063/5.0036771
    [9]
    L. Xie, A. Yoneda, T. Yoshino, H. Fei, and E. Ito, “Graphite–boron composite heater in a Kawai-type apparatus: The inhibitory effect of boron oxide and countermeasures,” High Pressure Res. 36(2), 105–120 (2016).10.1080/08957959.2016.1164151
    [10]
    X. Zhou, D. Ma, L. Wang, Y. Zhao, and S. Wang, “Large-volume cubic press produces high temperatures above 4000 Kelvin for study of the refractory materials at pressures,” Rev. Sci. Instrum. 91(1), 015118 (2020).10.1063/1.5128190
    [11]
    L. Xie, A. Yoneda, T. Katsura, D. Andrault, Y. Tange, and Y. Higo, “Direct viscosity measurement of peridotite melt to lower-mantle conditions: A further support for a fractional magma-ocean solidification at the top of the lower mantle,” Geophys. Res. Lett. 48(19), e2021GL094507, (2021).10.1029/2021gl094507
    [12]
    K. Nishida, L. Xie, E. J. Kim, and T. Katsura, “A strip-type boron-doped diamond heater synthesized by chemical vapor deposition for large-volume presses,” Rev. Sci. Instrum. 91(9), 095108 (2020).10.1063/5.0011742
    [13]
    Y. C. Shang, F. R. Shen, X. Y. Hou, L. Y. Chen, K. Hu, X. Li, R. Liu, Q. Tao, P.-W. Zhu, Z.-D. Liu, M.-G. Yao, Q. Zhou, T. Cui, and B.-B. Liu, “Pressure generation above 35 GPa in a Walker-type large-volume press,” Chin. Phys. Lett. 37(8), 080701 (2020).10.1088/0256-307x/37/8/080701
    [14]
    Z. Liu, T. Irifune, M. Nishi, Y. Tange, T. Arimoto, and T. Shinmei, “Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K,” Phys. Earth Planet. Inter. 257, 18–27 (2016).10.1016/j.pepi.2016.05.006
    [15]
    [16]
    S. Block, J. A. H. Da Jornada, and G. J. Piermarini, “Pressure-temperature phase diagram of zirconia,” J. Am. Ceram. Soc. 68(9), 497–499 (1985).10.1111/j.1151-2916.1985.tb15817.x
    [17]
    J. M. Leger, P. E. Tomaszewski, A. Atouf, and A. S. Pereira, “Pressure-induced structural phase transitions in zirconia under high pressure,” Phys. Rev. B 47(21), 14075 (1993).10.1103/physrevb.47.14075
    [18]
    P. Bouvier, E. Djurado, G. Lucazeau, and T. Le Bihan, “High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia,” Phys. Rev. B 62(13), 8731 (2000).10.1103/physrevb.62.8731
    [19]
    O. Ohtaka, D. Andrault, P. Bouvier, E. Schultz, and M. Mezouar, “Phase relations and equation of state of ZrO2 to 100 GPa,” J. Appl. Crystallogr. 38(5), 727–733 (2005).10.1107/s0021889805018145
    [20]
    W. D. Kingery, “Thermal conductivity: XIV, conductivity of multicomponent systems,” J. Am. Ceram. Soc. 42(12), 617–627 (1959).10.1111/j.1151-2916.1959.tb13583.x
    [21]
    J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).10.1103/physrevb.47.14850
    [22]
    W. S. Williams, “The thermal conductivity of metallic ceramics,” JOM 50(6), 62–66 (1998).10.1007/s11837-998-0131-y
    [23]
    B. Guimarães, C. M. Fernandes, D. Figueiredo, M. F. Cerqueira, O. Carvalho, F. S. Silva, and G. Miranda, “A novel approach to reduce in-service temperature in WC-Co cutting tools,” Ceram. Int. 46(3), 3002–3008 (2020).10.1016/j.ceramint.2019.09.299
    [24]
    M. Fukuda, A. Hasegawa, and S. Nogami, “Thermal properties of pure tungsten and its alloys for fusion applications,” Fusion Eng. Des. 132, 1–6 (2018).10.1016/j.fusengdes.2018.04.117
    [25]
    M. Bauccio, ASM Engineering Materials Reference Book, 2nd ed. (ASM International, OH, 1994).
    [26]
    O. L. Anderson and K. Zou, “Thermodynamic functions and properties of MgO at high compression and high temperature,” J. Phys. Chem. Ref. Data 19(1), 69–83 (1990).10.1063/1.555873
    [27]
    A. Liang, Y. Liu, H. Liang, F. Liu, C. Fan, J. Zhang, J. Wu, J. Chen, and D. He, “Thermal insulation performance of monoclinic ZrO2 and cubic ZrO2–CaO solid solution under high pressure and high temperature,” High Pressure Res. 38(4), 458–467 (2018).10.1080/08957959.2018.1517341
    [28]
    R. R. Reeber and K. Wang, “Thermal expansion, molar volume and specific heat of diamond from 0 to 3000 k,” J. Electron. Mater. 25(1), 63–67 (1996).10.1007/bf02666175
    [29]
    T. Song, X. Sun, Y. Liu, Z. Liu, Q. Chen, and C. Wang, “Comparative study of the structural and thermodynamic properties of MgO at high pressures and high temperatures,” J. Alloys Compd. 461(1–2), 279–284 (2008).10.1016/j.jallcom.2007.06.122
    [30]
    L. S. Levinson, “High-temperature heat contents of TiC and ZrC,” J. Chem. Phys. 42(8), 2891–2892 (1965).10.1063/1.1703257
    [31]
    H. Tripathy, C. Sudha, V. T. Paul, R. Thirumurugesan, T. N. Prasanthi, R. Sundar, N. Vijayashanthi, P. Parameswaran, and S. Raju, “High temperature thermophysical properties of spark plasma sintered tungsten carbide,” Int. J. Refract. Met. Hard Mater. 104, 105804 (2022).10.1016/j.ijrmhm.2022.105804
    [32]
    R. Hrubiak, Y. Meng, and G. Shen, “Microstructures define melting of molybdenum at high pressures,” Nat. Commun. 8(1), 14562 (2017).10.1038/ncomms14562
    [33]
    O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, and T. Kikegawa, “Phase relations and equations of state of ZrO2 under high temperature and high pressure,” Phys. Rev. B 63(17), 174108 (2001).10.1103/physrevb.63.174108
    [34]
    J. Hernlund, K. Leinenweber, D. Locke, and J. A. Tyburczy, “A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies,” Am. Mineral. 91(2–3), 295–305 (2006).10.2138/am.2006.1938
    [35]
    M. J. Walter, Y. Thibault, K. Wei, and R. W. Luth, “Characterizing experimental pressure and temperature conditions in multi-anvil apparatus,” Can. J. Phys. 73(5–6), 273–286 (1995).10.1139/p95-039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (58) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return