Citation: | Yang Long, Rehwald Martin, Kluge Thomas, Laso Garcia Alejandro, Toncian Toma, Zeil Karl, Schramm Ulrich, Cowan Thomas E., Huang Lingen. Dynamic convergent shock compression initiated by return current in high-intensity laser–solid interactions[J]. Matter and Radiation at Extremes, 2024, 9(4): 047204. doi: 10.1063/5.0181321 |
[1] |
G. Fowles, G. Duvall, J. Asay, P. Bellamy, F. Feistmann, D. Grady, T. Michaels, and R. Mitchell, “Gas gun for impact studies,” Rev. Sci. Instrum. 41, 984 (1970).10.1063/1.1684739
|
[2] | |
[3] |
T. S. Duffy and R. F. Smith, “Ultra-high pressure dynamic compression of geological materials,” Front. Earth Sci. 7, 23 (2019).10.3389/feart.2019.00023
|
[4] |
C. Deeney, M. Douglas, R. Spielman, T. Nash, D. Peterson, P. L’Eplattenier, G. Chandler, J. Seamen, and K. Struve, “Enhancement of x-ray power from a Z pinch using nested-wire arrays,” Phys. Rev. Lett 81, 4883 (1998).10.1103/physrevlett.81.4883
|
[5] | |
[6] |
X. B. Huang, X. D. Ren, J. K. Dan, K. L. Wang, Q. Xu, S. T. Zhou, S. Q. Zhang, H. C. Cai, J. Li, B. Wei et al., “Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility,” Phys. Plasmas 24, 092704 (2017).10.1063/1.4998619
|
[7] |
S. Meng, F. Ye, Z. Xu, X. Yan, S. Jiang, J. Lu, Z. Huang, Q. Yi, F. Chen, R. Yang et al., “Visualizing magnetically driven converging radiative shock generated in Z-pinch foil liner implosion,” Phys. Plasmas 28, 122713 (2021).10.1063/5.0062379
|
[8] |
J. Bailey, G. Chandler, S. Slutz, G. Bennett, G. Cooper, J. Lash, S. Lazier, R. Lemke, T. Nash, D. Nielsen et al., “X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum,” Phys. Rev. Lett. 89, 095004 (2002).10.1103/physrevlett.89.095004
|
[9] |
G. A. Rochau, J. Bailey, Y. Maron, G. Chandler, G. Dunham, D. Fisher, V. Fisher, R. Lemke, J. MacFarlane, K. Peterson et al., “Radiating shock measurements in the Z-pinch dynamic hohlraum,” Phys. Rev. Lett. 100, 125004 (2008).10.1103/physrevlett.100.125004
|
[10] |
E. I. Moses, “Advances in inertial confinement fusion at the National Ignition Facility (NIF),” Fusion Eng. Des. 85, 983 (2010).10.1016/j.fusengdes.2009.11.006
|
[11] |
M. L. Spaeth, K. Manes, D. Kalantar, P. Miller, J. Heebner, E. Bliss, D. Spec, T. Parham, P. Whitman, P. Wegner et al., “Description of the NIF laser,” Fusion Sci. Technol. 69, 25 (2016).10.13182/fst15-144
|
[12] |
O. Hurricane, R. Acree, P. Adams, J. Adams, B. Addis, R. Aden, P. Adrian, B. Afeyan, M. Aggleton, L. Aghaian et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).10.1103/PhysRevLett.129.075001
|
[13] |
S. Jiang, F. Wang, Y. Ding, S. Liu, J. Yang, S. Li, T. Huang, Z. Cao, Z. Yang, X. Hu et al., “Experimental progress of inertial confinement fusion based at the Shenguang-III laser facility in China,” Nucl. Fusion 59, 032006 (2018).10.1088/1741-4326/aabdb6
|
[14] |
A. L. Kritcher, P. Neumayer, J. Castor, T. Döppner, R. W. Falcone, O. L. Landen, H. J. Lee, R. W. Lee, E. C. Morse, A. Ng et al., “Ultrafast x-ray Thomson scattering of shock-compressed matter,” Science 322, 69 (2008).10.1126/science.1161466
|
[15] |
D. Bradley, J. Eggert, R. Smith, S. Prisbrey, D. Hicks, D. Braun, J. Biener, A. Hamza, R. Rudd, and G. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102, 075503 (2009).10.1103/physrevlett.102.075503
|
[16] |
R. Lemke, M. Knudson, D. Bliss, K. Cochrane, J.-P. Davis, A. Giunta, H. Harjes, and S. Slutz, “Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments,” J. Appl. Phys. 98, 073530 (2005).10.1063/1.2084316
|
[17] |
M. Knudson, M. Desjarlais, and D. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322, 1822 (2008).10.1126/science.1165278
|
[18] |
S. Root, L. Shulenburger, R. W. Lemke, D. H. Dolan, T. R. Mattsson, and M. P. Desjarlais, “Shock response and phase transitions of MgO at planetary impact conditions,” Phys. Rev. Lett. 115, 198501 (2015).10.1103/physrevlett.115.198501
|
[19] |
M. Knudson and M. Desjarlais, “Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime,” Phys. Rev. B 88, 184107 (2013).10.1103/physrevb.88.184107
|
[20] |
N. Ozaki, W. Nellis, T. Mashimo, M. Ramzan, R. Ahuja, T. Kaewmaraya, T. Kimura, M. Knudson, K. Miyanishi, Y. Sakawa et al., “Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals,” Sci. Rep. 6, 26000 (2016).10.1038/srep26000
|
[21] |
R. Kraus, J.-P. Davis, C. Seagle, D. Fratanduono, D. Swift, J. Brown, and J. Eggert, “Dynamic compression of copper to over 450 GPa: A high-pressure standard,” Phys. Rev. B 93, 134105 (2016).10.1103/physrevb.93.134105
|
[22] |
M. D. Knudson, “Megaamps, megagauss, and megabars: Using the Sandia Z Machine to perform extreme material dynamics experiments,” AIP Conf. Proc. 1426, 35 (2012).10.1063/1.3686216
|
[23] |
C. Deeney, T. Nash, R. Spielman, J. Seaman, G. Chandler, K. Struve, J. Porter, W. Stygar, J. McGurn, D. Jobe et al., “Power enhancement by increasing the initial array radius and wire number of tungsten Z pinches,” Phys. Rev. E 56, 5945 (1997).10.1103/physreve.56.5945
|
[24] |
R. Spielman, C. Deeney, G. Chandler, M. Douglas, D. Fehl, M. Matzen, D. McDaniel, T. Nash, J. Porter, T. Sanford et al., “Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ,” Phys. Plasmas 5, 2105 (1998).10.1063/1.872881
|
[25] |
M. E. Cuneo, R. A. Vesey, J. L. Porter, Jr, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles et al., “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257 (2001).10.1063/1.1348328
|
[26] |
G. A. Rochau, J. E. Bailey, G. A. Chandler, G. Cooper, G. Dunham, P. Lake, R. Leeper, R. Lemke, T. Mehlhorn, A. Nikroo et al., “High performance capsule implosions driven by the Z-pinch dynamic hohlraum,” Plasma Phys. Controlled Fusion 49, B591 (2007).10.1088/0741-3335/49/12b/s55
|
[27] |
M. Haines, “A review of the dense Z-pinch,” Plasma Phys. Controlled Fusion 53, 093001 (2011).10.1088/0741-3335/53/9/093001
|
[28] |
P. Gibbon, “Efficient production of fast electrons from femtosecond laser interaction with solid targets,” Phys. Rev. Lett. 73, 664 (1994).10.1103/physrevlett.73.664
|
[29] |
G. Malka and J. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 75 (1996).10.1103/physrevlett.77.75
|
[30] |
P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction (World Scientific, 2005).
|
[31] |
V. Kaymak, A. Pukhov, V. N. Shlyaptsev, and J. J. Rocca, “Nanoscale ultradense Z-pinch formation from laser-irradiated nanowire arrays,” Phys. Rev. Lett. 117, 035004 (2016).10.1103/physrevlett.117.035004
|
[32] |
R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
|
[33] |
F. Beg, M. Wei, E. Clark, A. Dangor, R. Evans, P. Gibbon, A. Gopal, K. Lancaster, K. Ledingham, P. McKenna et al., “Return current and proton emission from short pulse laser interactions with wire targets,” Phys. Plasmas 11, 2806 (2004).10.1063/1.1704643
|
[34] |
A. Hauer and R. Mason, “Return-current heating and implosion of cylindrical CO2-laser-driven targets,” Phys. Rev. Lett. 51, 459 (1983).10.1103/physrevlett.51.459
|
[35] |
R. F. Benjamin, G. H. McCall, and A. W. Ehler, “Measurement of return current in a laser-produced plasma,” Phys. Rev. Lett. 42, 890 (1979).10.1103/physrevlett.42.890
|
[36] |
A. Sandhu, A. Dharmadhikari, P. Rajeev, G. R. Kumar, S. Sengupta, A. Das, and P. Kaw, “Laser-generated ultrashort multimegagauss magnetic pulses in plasmas,” Phys. Rev. Lett. 89, 225002 (2002).10.1103/physrevlett.89.225002
|
[37] |
J. Ong, P. Ghenuche, I. C. E. Turcu, A. Pukhov, and K. Tanaka, “Ultra-high-pressure generation in the relativistic transparency regime in laser-irradiated nanowire arrays,” Phys. Rev. E 107, 065208 (2023).10.1103/physreve.107.065208
|
[38] |
F. Beg, E. Clark, M. Wei, A. Dangor, R. Evans, A. Gopal, K. Lancaster, K. Ledingham, P. McKenna, P. Norreys et al., “High-intensity-laser-driven Z pinches,” Phys. Rev. Lett 92, 095001 (2004).10.1103/physrevlett.92.095001
|
[39] |
J.-P. Davis, C. Deeney, M. D. Knudson, R. W. Lemke, T. D. Pointon, and D. E. Bliss, “Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator,” Phys. Plasmas 12, 056310 (2005).10.1063/1.1871954
|
[40] |
Z. Li, Z. Wang, R. Xu, J. Yang, F. Ye, Y. Chu, Z. Xu, F. Chen, S. Meng, J. Qi et al., “Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion,” Matter Radiat. Extremes 4, 046201 (2019).10.1063/1.5099088
|
[41] |
Y. Zhang, U. Shumlak, B. Nelson, R. Golingo, T. Weber, A. Stepanov, E. Claveau, E. Forbes, Z. Draper, J. Mitrani et al., “Sustained neutron production from a sheared-flow stabilized z pinch,” Phys. Rev. Lett. 122, 135001 (2019).10.1103/physrevlett.122.135001
|
[42] |
R. Wright, D. Pott, and M. Haines, “Stability considerations of a hot cylindrical pinch,” Plasma Phys. 18, 1 (1976).10.1088/0032-1028/18/1/001
|
[43] |
G. L. Delzanno, E. G. Evstatiev, and J. M. Finn, “Resistive effects on line-tied magnetohydrodynamic modes in cylindrical geometry,” Phys. Plasmas 14, 092901 (2007).10.1063/1.2760206
|
[44] |
G. L. Delzanno and J. M. Finn, “The effect of line-tying on tearing modes,” Phys. Plasmas 15, 032904 (2008).10.1063/1.2876666
|
[45] |
M. Rehwald, Laser-proton Acceleration in the Near-Critical Regime Using Density Tailored Cryogenic Hydrogen Jets (Technische Universität Dresden, Dresden, 2022).
|
[46] | |
[47] |
M. Povarnitsyn, N. Andreev, P. Levashov, K. Khishchenko, and O. Rosmej, “Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams,” Phys. Plasmas 19, 023110 (2012).10.1063/1.3683687
|
[48] |
M. E. Povarnitsyn, N. E. Andreev, P. R. Levashov, K. V. Khishchenko, D. A. Kim, V. G. Novikov, and O. N. Rosmej, “Laser irradiation of thin films: Effect of energy transformation,” Laser Part. Beams 31, 663 (2013).10.1017/s0263034613000700
|
[49] |
N. Andreev, M. Povarnitsyn, M. Veysman, A. Y. Faenov, P. Levashov, K. Khishchenko, T. Pikuz, A. Magunov, O. Rosmej, A. Blazevic et al., “Interaction of annular-focused laser beams with solid targets,” Laser Part. Beams 33, 541 (2015).10.1017/s0263034615000580
|
[50] | |
[51] |
Y. Sentoku and A. J. Kemp, “Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents,” J. Comput. Phys. 227, 6846 (2008).10.1016/j.jcp.2008.03.043
|
[52] | |
[53] |
F. Pérez, L. Gremillet, A. Decoster, M. Drouin, and E. Lefebvre, “Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes,” Phys. Plasmas 19, 083104 (2012).10.1063/1.4742167
|
[54] |
K. Quinn, P. A. Wilson, C. A. Cecchetti, B. Ramakrishna, L. Romagnani, G. Sarri, L. Lancia, J. Fuchs, A. Pipahl, T. Toncian, O. Willi, R. J. Clarke, D. Neely, M. Notley, P. Gallegos, D. C. Carroll, M. N. Quinn, X. H. Yuan, P. McKenna, T. V. Liseykina, A. Macchi, and M. Borghesi, “Laser-driven ultrafast field propagation on solid surfaces,” Phys. Rev. Lett. 102, 194801 (2009).10.1103/physrevlett.102.194801
|
[55] |
L. Huang, M. Molodtsova, A. Ferrari, A. L. Garcia, T. Toncian, and T. Cowan, “Dynamics of hot refluxing electrons in ultra-short relativistic laser foil interactions,” Phys. Plasmas 29, 023102 (2022).10.1063/5.0077222
|
[56] |
L. Yang, L. Huang, S. Assenbaum, T. E. Cowan, I. Goethel, S. Göde, T. Kluge, M. Rehwald, X. Pan, U. Schramm et al., “Time-resolved optical shadowgraphy of solid hydrogen jets as a testbed to benchmark particle-in-cell simulations,” Commun. Phys. 6, 368 (2023).10.1038/s42005-023-01473-w
|
[57] |
A. J. Kemp, Y. Sentoku, V. Sotnikov, and S. Wilks, “Collisional relaxation of superthermal electrons generated by relativistic laser pulses in dense plasma,” Phys. Rev. Lett. 97, 235001 (2006).10.1103/physrevlett.97.235001
|
[58] | |
[59] | |
[60] |
B. Fryxell, K. Olson, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, “Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J., Suppl. Ser. 131, 273 (2000).10.1086/317361
|
[61] |
A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid, K. Riley, D. Sheeler, A. Siegel, and K. Weide, “Extensible component-based architecture for flash, a massively parallel, multiphysics simulation code,” Parallel Comput. 35, 512 (2009).10.1016/j.parco.2009.08.001
|
[62] |
R. W. Lemke, M. D. Knudson, and J.-P. Davis, “Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator,” Int. J. Impact Eng 38, 480 (2011).10.1016/j.ijimpeng.2010.10.019
|
[63] |
M. Kadatskiy and K. Khishchenko, “Theoretical investigation of the shock compressibility of copper in the average-atom approximation,” Phys. Plasmas 25, 112701 (2018).10.1063/1.5050248
|
[64] |
C. E. Ragan III, “Shock-wave experiments at threefold compression,” Phys. Rev. A 29, 1391 (1984).10.1103/physreva.29.1391
|
[65] |
E. N. Avrorin, B. Vodolaga, V. A. Simonenko, and V. E. Fortov, “Intense shock waves and extreme states of matter,” Phys.-Usp. 36, 337 (1993).10.1070/pu1993v036n05abeh002158
|
[66] |
R. F. Trunin, “Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions,” Phys.-Usp. 37, 1123 (1994).10.1070/pu1994v037n11abeh000055
|
[67] |
K. Guderley, “Starke kugelige und zylindrische verdichtungsstosse in der nahe des kugelmitterpunktes bnw. der zylinderachse,” Luftfahrtforschung 19, 302 (1942).
|
[68] |
K. Khishchenko, A. Charakhch’yan, V. Milyavskii, V. Fortov, A. Frolova, and L. Shurshalov, “Mechanism of amplification of convergent shock waves in porous media,” Russ. J. Phys. Chem. B 1, 612 (2007).10.1134/s1990793107060164
|
[69] |
A. Charakhch’yan, K. Khishchenko, V. Fortov, A. Frolova, V. Milyavskiy, and L. Shurshalov, “Shock compression of some porous media in conical targets: Numerical study,” Shock Waves 21, 35 (2011).10.1007/s00193-010-0274-y
|
[70] |
N. Y. Orlov, M. A. Kadatskiy, O. B. Denisov, and K. V. Khishchenko, “Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas,” Matter Radiat. Extremes 4, 054403 (2019).10.1063/1.5096439
|
[71] |
D. Sinars, S. Slutz, M. Herrmann, R. McBride, M. Cuneo, K. Peterson, R. Vesey, C. Nakhleh, B. Blue, K. Killebrew et al., “Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility,” Phys. Rev. Lett. 105, 185001 (2010).10.1103/physrevlett.105.185001
|
[72] |
M. Weis, P. Zhang, Y. Lau, P. Schmit, K. Peterson, M. Hess, and R. Gilgenbach, “Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner,” Phys. Plasmas 22, 032706 (2015).10.1063/1.4915520
|
[73] |
C. Bernert, S. Assenbaum, F.-E. Brack, T. E. Cowan, C. B. Curry, M. Garten, L. Gaus, M. Gauthier, S. Göde, I. Goethel et al., “Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets,” Sci. Rep. 12, 7287 (2022).10.1038/s41598-022-10797-6
|
[74] |
M. Rehwald, S. Assenbaum, C. Bernert, F.-E. Brack, M. Bussmann, T. E. Cowan, C. B. Curry, F. Fiuza, M. Garten, L. Gaus et al., “Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density,” Nat. Commun. 14, 4009 (2023).10.1038/s41467-023-39739-0
|