| Citation: | Chen Tao, Liu Qianrui, Liu Yu, Sun Liang, Chen Mohan. Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter[J]. Matter and Radiation at Extremes, 2024, 9(1): 015604. doi: 10.1063/5.0163303 |
| [1] |
T. Guillot, “Interiors of giant planets inside and outside the solar system,” Science 286, 72–77 (1999).10.1126/science.286.5437.72
|
| [2] |
E. Campbell, V. Goncharov, T. Sangster, S. Regan, P. Radha, R. Betti, J. Myatt, D. Froula, M. Rosenberg, I. Igumenshchev, W. Seka, A. Solodov, A. Maximov, J. Marozas, T. Collins, D. Turnbull, F. Marshall, A. Shvydky, J. Knauer, R. McCrory, A. Sefkow, M. Hohenberger, P. Michel, T. Chapman, L. Masse, C. Goyon, S. Ross, J. Bates, M. Karasik, J. Oh, J. Weaver, A. Schmitt, K. Obenschain, S. Obenschain, S. Reyes, and B. Van Wonterghem, “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 37–54 (2017).10.1016/j.mre.2017.03.001
|
| [3] |
E. I. Moses, “Ignition on the National Ignition Facility: A path towards inertial fusion energy,” Nucl. Fusion 49, 104022 (2009).10.1088/0029-5515/49/10/104022
|
| [4] |
F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, Frontiers and Challenges in Warm Dense Matter (Springer Cham, 2014).
|
| [5] |
B. A. Remington, R. P. Drake, and D. D. Ryutov, “Experimental astrophysics with high power lasers and Z pinches,” Rev. Mod. Phys. 78, 755–807 (2006).10.1103/revmodphys.78.755
|
| [6] |
P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864–B871 (1964).10.1103/physrev.136.b864
|
| [7] |
W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).10.1103/physrev.140.a1133
|
| [8] |
B. Militzer and D. M. Ceperley, “Path integral Monte Carlo calculation of the deuterium hugoniot,” Phys. Rev. Lett. 85, 1890–1893 (2000).10.1103/physrevlett.85.1890
|
| [9] |
B. Militzer, D. M. Ceperley, J. D. Kress, J. D. Johnson, L. A. Collins, and S. Mazevet, “Calculation of a deuterium double shock Hugoniot from ab initio simulations,” Phys. Rev. Lett. 87, 275502 (2001).10.1103/physrevlett.87.275502
|
| [10] |
S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “Strong coupling and degeneracy effects in inertial confinement fusion implosions,” Phys. Rev. Lett. 104, 235003 (2010).10.1103/physrevlett.104.235003
|
| [11] |
K. P. Driver and B. Militzer, “All-electron path integral Monte Carlo simulations of warm dense matter: Application to water and carbon plasmas,” Phys. Rev. Lett. 108, 115502 (2012).10.1103/physrevlett.108.115502
|
| [12] |
C. Wang, X.-T. He, and P. Zhang, “Ab initio simulations of dense helium plasmas,” Phys. Rev. Lett. 106, 145002 (2011).10.1103/physrevlett.106.145002
|
| [13] |
T. G. White, S. Richardson, B. J. B. Crowley, L. K. Pattison, J. W. O. Harris, and G. Gregori, “Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum,” Phys. Rev. Lett. 111, 175002 (2013).10.1103/physrevlett.111.175002
|
| [14] |
D. Kang, K. Luo, K. Runge, and S. B. Trickey, “Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces,” Matter Radiat. Extremes 5, 064403 (2020).10.1063/5.0025164
|
| [15] |
Q. Liu, D. Lu, and M. Chen, “Structure and dynamics of warm dense aluminum: A molecular dynamics study with density functional theory and deep potential,” J. Phys.: Condens. Matter 32, 144002 (2020).10.1088/1361-648x/ab5890
|
| [16] |
S. Zhang, H. Wang, W. Kang, P. Zhang, and X. T. He, “Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas,” Phys. Plasmas 23, 042707 (2016).10.1063/1.4947212
|
| [17] |
X. Liu, X. Zhang, C. Gao, S. Zhang, C. Wang, D. Li, P. Zhang, W. Kang, W. Zhang, and X. T. He, “Equations of state of poly-α-methylstyrene and polystyrene: First-principles calculations versus precision measurements,” Phys. Rev. B 103, 174111 (2021).10.1103/physrevb.103.174111
|
| [18] |
A. Blanchet, J. Clérouin, M. Torrent, and F. Soubiran, “Extended first-principles molecular dynamics model for high temperature simulations in the ABINIT code: Application to warm dense aluminum,” Comput. Phys. Commun. 271, 108215 (2022).10.1016/j.cpc.2021.108215
|
| [19] |
A. Blanchet, F. Soubiran, M. Torrent, and J. Clérouin, “Extended first-principles molecular dynamics simulations of hot dense boron: Equation of state and ionization,” Contrib. Plasma Phys. 62, e202100234 (2022).10.1002/ctpp.202100234
|
| [20] |
R. Baer, D. Neuhauser, and E. Rabani, “Self-averaging stochastic Kohn-Sham density-functional theory,” Phys. Rev. Lett. 111, 106402 (2013).10.1103/physrevlett.111.106402
|
| [21] |
Y. Cytter, E. Rabani, D. Neuhauser, and R. Baer, “Stochastic density functional theory at finite temperatures,” Phys. Rev. B 97, 115207 (2018).10.1103/physrevb.97.115207
|
| [22] |
M. D. Fabian, B. Shpiro, E. Rabani, D. Neuhauser, and R. Baer, “Stochastic density functional theory,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 9, e1412 (2019).10.1002/wcms.1412
|
| [23] |
R. Baer, D. Neuhauser, and E. Rabani, “Stochastic vector techniques in ground-state electronic structure,” Annu. Rev. Phys. Chem. 73, 255–272 (2022).10.1146/annurev-physchem-090519-045916
|
| [24] |
V. Sharma, L. A. Collins, and A. J. White, “Stochastic and mixed density functional theory within the projector augmented wave formalism for simulation of warm dense matter,” Phys. Rev. E 108, L023201 (2023).10.1103/physreve.108.l023201
|
| [25] |
N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441–A1443 (1965).10.1103/physrev.137.a1441
|
| [26] |
M. P. Surh, T. W. Barbee, and L. H. Yang, “First principles molecular dynamics of dense plasmas,” Phys. Rev. Lett. 86, 5958–5961 (2001).10.1103/physrevlett.86.5958
|
| [27] |
C. Wang and P. Zhang, “Wide range equation of state for fluid hydrogen from density functional theory,” Phys. Plasmas 20, 092703 (2013).10.1063/1.4821839
|
| [28] |
T. Sjostrom and J. Daligault, “Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes,” Phys. Rev. Lett. 113, 155006 (2014).10.1103/physrevlett.113.155006
|
| [29] |
L. Fiedler, Z. A. Moldabekov, X. Shao, K. Jiang, T. Dornheim, M. Pavanello, and A. Cangi, “Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory,” Phys. Rev. Res. 4, 043033 (2022).10.1103/physrevresearch.4.043033
|
| [30] |
B. Militzer, F. González-Cataldo, S. Zhang, K. P. Driver, and F. m. c. Soubiran, “First-principles equation of state database for warm dense matter computation,” Phys. Rev. E 103, 013203 (2021).10.1103/physreve.103.013203
|
| [31] |
T. Dornheim, “Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter,” Phys. Rev. E 100, 023307 (2019).10.1103/physreve.100.023307
|
| [32] |
K. Luo, V. V. Karasiev, and S. B. Trickey, “A simple generalized gradient approximation for the noninteracting kinetic energy density functional,” Phys. Rev. B 98, 041111 (2018).10.1103/physrevb.98.041111
|
| [33] |
A. J. White and L. A. Collins, “Fast and universal Kohn-Sham density functional theory algorithm for warm dense matter to hot dense plasma,” Phys. Rev. Lett. 125, 055002 (2020).10.1103/physrevlett.125.055002
|
| [34] |
M. Chen, G.-C. Guo, and L. He, “Systematically improvable optimized atomic basis sets for ab initio calculations,” J. Phys.: Condens. Matter 22, 445501 (2010).10.1088/0953-8984/22/44/445501
|
| [35] |
P. Li, X. Liu, M. Chen, P. Lin, X. Ren, L. Lin, C. Yang, and L. He, “Large-scale ab initio simulations based on systematically improvable atomic basis,” Comput. Mater. Sci. 112, 503–517 (2016).10.1016/j.commatsci.2015.07.004
|
| [36] |
Q. Liu and M. Chen, “Plane-wave-based stochastic-deterministic density functional theory for extended systems,” Phys. Rev. B 106, 125132 (2022).10.1103/physrevb.106.125132
|
| [37] |
J. Behler, “Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations,” Phys. Chem. Chem. Phys. 13, 17930–17955 (2011).10.1039/c1cp21668f
|
| [38] |
T. Morawietz and J. Behler, “A density-functional theory-based neural network potential for water clusters including van der waals corrections,” J. Phys. Chem. A 117, 7356–7366 (2013).10.1021/jp401225b
|
| [39] |
A. P. Bartók and G. Csányi, “Gaussian approximation potentials: A brief tutorial introduction,” Int. J. Quantum Chem. 115, 1051–1057 (2015).10.1002/qua.24927
|
| [40] |
H.-Y. Ko, L. Zhang, B. Santra, H. Wang, R. A. DiStasio Jr, and R. Car. Isotope effects in liquid water via deep potential molecular dynamics,” Mol. Phys. 117, 3269–3281 (2019).10.1080/00268976.2019.1652366
|
| [41] |
G. P. P. Pun, R. Batra, R. Ramprasad, and Y. Mishin, “Physically informed artificial neural networks for atomistic modeling of materials,” Nat. Commun. 10, 2339 (2019).10.1038/s41467-019-10343-5
|
| [42] |
J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros, S. Tretiak, O. Isayev, and A. E. Roitberg, “Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning,” Nat. Commun. 10, 2903 (2019).10.1038/s41467-019-10827-4
|
| [43] |
Q. Zeng, B. Chen, X. Yu, S. Zhang, D. Kang, H. Wang, and J. Dai, “Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning,” Phys. Rev. B 105, 174109 (2022).10.1103/physrevb.105.174109
|
| [44] |
T. E. Gartner, L. Zhang, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Signatures of a liquid–liquid transition in an ab initio deep neural network model for water,” Proc. Natl. Acad. Sci. U. S. A. 117, 26040–26046 (2020).10.1073/pnas.2015440117
|
| [45] |
M. Schörner, H. R. Rüter, M. French, and R. Redmer, “Extending ab initio simulations for the ion-ion structure factor of warm dense aluminum to the hydrodynamic limit using neural network potentials,” Phys. Rev. B 105, 174310 (2022).10.1103/physrevb.105.174310
|
| [46] |
M. Schörner, B. B. L. Witte, A. D. Baczewski, A. Cangi, and R. Redmer, “Ab initio study of shock-compressed copper,” Phys. Rev. B 106, 054304 (2022).10.1103/physrevb.106.054304
|
| [47] |
L. Fiedler, K. Shah, M. Bussmann, and A. Cangi, “Deep dive into machine learning density functional theory for materials science and chemistry,” Phys. Rev. Mater. 6, 040301 (2022).10.1103/physrevmaterials.6.040301
|
| [48] |
S. Kumar, H. Tahmasbi, K. Ramakrishna, M. Lokamani, S. Nikolov, J. Tranchida, M. A. Wood, and A. Cangi, “Transferable interatomic potential for aluminum from ambient conditions to warm dense matter,” Phys. Rev. Res. 5, 033162 (2023).10.1103/physrevresearch.5.033162
|
| [49] |
L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics,” Phys. Rev. Lett. 120, 143001 (2018).10.1103/physrevlett.120.143001
|
| [50] |
H. Wang, L. Zhang, J. Han, and W. E, “DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics,” Comput. Phys. Commun. 228, 178–184 (2018).10.1016/j.cpc.2018.03.016
|
| [51] |
Y. Zhang, C. Gao, Q. Liu, L. Zhang, H. Wang, and M. Chen, “Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics,” Phys. Plasmas 27, 122704 (2020).10.1063/5.0023265
|
| [52] |
T. Wen, L. Zhang, H. Wang, W. E, and D. J. Srolovitz, “Deep potentials for materials science,” Mater. Futures 1, 022601 (2022).10.1088/2752-5724/ac681d
|
| [53] |
D. Lu, H. Wang, M. Chen, L. Lin, R. Car, W. E, W. Jia, and L. Zhang, “86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy,” Comput. Phys. Commun. 259, 107624 (2021).10.1016/j.cpc.2020.107624
|
| [54] |
W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, and L. Zhang, Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning (IEEE Press, 2020).
|
| [55] |
Q. Zeng, X. Yu, Y. Yao, T. Gao, B. Chen, S. Zhang, D. Kang, H. Wang, and J. Dai, “Ab initio validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter,” Phys. Rev. Res. 3, 033116 (2021).10.1103/physrevresearch.3.033116
|
| [56] |
Q. Liu, J. Li, and M. Chen, “Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study,” Matter Radiat. Extremes 6, 026902 (2021).10.1063/5.0030123
|
| [57] |
R. Baer and M. Head-Gordon, “Sparsity of the density matrix in Kohn-Sham density functional theory and an assessment of linear system-size scaling methods,” Phys. Rev. Lett. 79, 3962–3965 (1997).10.1103/physrevlett.79.3962
|
| [58] | |
| [59] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
|
| [60] |
D. Lu, W. Jiang, Y. Chen, L. Zhang, W. Jia, H. Wang, and M. Chen, “DP compress: A model compression scheme for generating efficient deep potential models,” J. Chem. Theory Comput. 18, 5559–5567 (2022).10.1021/acs.jctc.2c00102
|
| [61] |
D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B 88, 085117 (2013).10.1103/physrevb.88.085117
|
| [62] |
M. Schlipf and F. Gygi, “Optimization algorithm for the generation of ONCV pseudopotentials,” Comput. Phys. Commun. 196, 36–44 (2015).10.1016/j.cpc.2015.05.011
|
| [63] |
C. Gao, S. Zhang, W. Kang, C. Wang, P. Zhang, and X. T. He, “Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure,” Phys. Rev. B 94, 205115 (2016).10.1103/physrevb.94.205115
|
| [64] |
S. Zhang, B. Militzer, M. C. Gregor, K. Caspersen, L. H. Yang, J. Gaffney, T. Ogitsu, D. Swift, A. Lazicki, D. Erskine, R. A. London, P. M. Celliers, J. Nilsen, P. A. Sterne, and H. D. Whitley, “Theoretical and experimental investigation of the equation of state of boron plasmas,” Phys. Rev. E 98, 023205 (2018).10.1103/physreve.98.023205
|
| [65] |
V. V. Karasiev, J. W. Dufty, and S. B. Trickey, “Nonempirical semilocal free-energy density functional for matter under extreme conditions,” Phys. Rev. Lett. 120, 076401 (2018).10.1103/physrevlett.120.076401
|
| [66] |
L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly accurate interatomic potentials for materials simulation,” Phys. Rev. Mater. 3, 023804 (2019).10.1103/physrevmaterials.3.023804
|
| [67] |
J. Zeng, L. Cao, M. Xu, T. Zhu, and J. Z. H. Zhang, “Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation,” Nat. Commun. 11, 5713 (2020).10.1038/s41467-020-19497-z
|
| [68] |
T. Chen, F. Yuan, J. Liu, H. Geng, L. Zhang, H. Wang, and M. Chen, “Modeling the high-pressure solid and liquid phases of tin from deep potentials with ab initio accuracy,” Phys. Rev. Mater. 7, 053603 (2023).10.1103/physrevmaterials.7.053603
|
| [69] |
S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511–519 (1984).10.1063/1.447334
|
| [70] |
W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695–1697 (1985).10.1103/physreva.31.1695
|
| [71] |
S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).10.1006/jcph.1995.1039
|
| [72] |
A. J. Greenfield, J. Wellendorf, and N. Wiser, “X-ray determination of the static structure factor of liquid Na and K,” Phys. Rev. A 4, 1607–1616 (1971).10.1103/physreva.4.1607
|
| [73] |
E. C. Svensson, V. F. Sears, A. D. B. Woods, and P. Martel, “Neutron-diffraction study of the static structure factor and pair correlations in liquid 4He,” Phys. Rev. B 21, 3638–3651 (1980).10.1103/physrevb.21.3638
|
| [74] |
H. Kählert, “Dynamic structure factor of strongly coupled Yukawa plasmas with dissipation,” Phys. Plasmas 26, 063703 (2019).10.1063/1.5099579
|
| [75] |
V. M. Giordano and G. Monaco, “Fingerprints of order and disorder on the high-frequency dynamics of liquids,” Proc. Natl. Acad. Sci. U. S. A. 107, 21985–21989 (2010).10.1073/pnas.1006319107
|
| [76] |
P. Mabey, S. Richardson, T. G. White, L. B. Fletcher, S. H. Glenzer, N. J. Hartley, J. Vorberger, D. O. Gericke, and G. Gregori, “A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics,” Nat. Commun. 8, 14125 (2017).10.1038/ncomms14125
|
| [77] |
D. Kraus, D. A. Chapman, A. L. Kritcher, R. A. Baggott, B. Bachmann, G. W. Collins, S. H. Glenzer, J. A. Hawreliak, D. H. Kalantar, O. L. Landen, T. Ma, S. Le Pape, J. Nilsen, D. C. Swift, P. Neumayer, R. W. Falcone, D. O. Gericke, and T. Döppner, “X-ray scattering measurements on imploding CH spheres at the National Ignition Facility,” Phys. Rev. E 94, 011202 (2016).10.1103/physreve.94.011202
|
| [78] |
T. Döppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman, B. Bachmann, R. A. Baggott, M. P. Böhme, L. Divol, R. W. Falcone, L. B. Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders, M. Schörner, P. A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer, S. H. Glenzer, and D. O. Gericke, “Observing the onset of pressure-driven K-shell delocalization,” Nature 618, 270–275 (2023).10.1038/s41586-023-05996-8
|
| [79] |
M. S. Green, “Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids,” J. Chem. Phys. 22, 398–413 (1954).10.1063/1.1740082
|
| [80] |
R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).10.1143/jpsj.12.570
|
| [81] |
M. Chen, J. R. Vella, A. Z. Panagiotopoulos, P. G. Debenedetti, F. H. Stillinger, and E. A. Carter, “Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method,” AIChE J. 61, 2841–2853 (215).10.1002/aic.14795
|
| [82] |
J. R. Vella, M. Chen, F. H. Stillinger, E. A. Carter, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field,” Phys. Rev. B 95, 064202 (2017).10.1103/physrevb.95.064202
|
| [83] |
C. Malosso, L. Zhang, R. Car, S. Baroni, and D. Tisi, “Viscosity in water from first-principles and deep-neural-network simulations,” npj Comput. Mater. 8, 139 (2022).10.1038/s41524-022-00830-7
|
| [84] |
Y. Cheng, H. Liu, Y. Hou, X. Meng, Q. Li, Y. Liu, X. Gao, J. Yuan, H. Song, and J. Wang, “Random-walk shielding-potential viscosity model for warm dense metals,” Phys. Rev. E 106, 014142 (2022).10.1103/physreve.106.014142
|
| [85] | |
| [86] |
E. P. M. I. Boulos and P. L. Fauchais, Handbook of Thermal Plasmas (Springer, Cham, 2023).
|
|
|