Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Jia Xiaobao, Jia Qing, Yan Rui, Zheng Jian. Suppressing stimulated Raman side-scattering with vector light[J]. Matter and Radiation at Extremes, 2023, 8(5): 055603. doi: 10.1063/5.0157811
Citation: Jia Xiaobao, Jia Qing, Yan Rui, Zheng Jian. Suppressing stimulated Raman side-scattering with vector light[J]. Matter and Radiation at Extremes, 2023, 8(5): 055603. doi: 10.1063/5.0157811

Suppressing stimulated Raman side-scattering with vector light

doi: 10.1063/5.0157811
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: qjia@ustc.edu.cn and jzheng@ustc.edu.cn
  • Received Date: 2023-05-11
  • Accepted Date: 2023-07-24
  • Available Online: 2023-09-01
  • Publish Date: 2023-09-01
  • Recent observations of stimulated Raman side-scattering (SRSS) in different laser inertial confinement fusion ignition schemes have revealed that there is an underlying risk of SRSS on ignition. In this paper, we propose a method that uses the nonuniform nature of the polarization of vector light to suppress SRSS, and we give an additional threshold condition determined by the parameters of the vector light. For SRSS at 90°, where the scattered electromagnetic wave travels perpendicular to the density profile, the variation in polarization of the pump will change the wave vector of the scattered light, thereby reducing the growth length and preventing the scattered electromagnetic wave from growing. This suppression scheme is verified through three-dimensional particle-in-cell simulations. Our illustrative simulation results demonstrate that for linearly polarized Gaussian light, there is a strong SRSS signal in the 90° direction, whereas for vector light, there is very little SRSS signal, even when the conditions significantly exceed the threshold for SRSS. We also discuss the impact of vector light on stimulated Raman backscattering, collective stimulated Brillouin scattering and two-plasmon decay.
  • loading
  • [1]
    D. W. Forslund, J. M. Kindel, and E. L. Lindman, “Theory of stimulated scattering processes in laser-irradiated plasmas,” Phys. Fluids 18, 1002 (1975).10.1063/1.861248
    [2]
    C. S. Liu, M. N. Rosenbluth, and R. B. White, “Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas,” Phys. Fluids 17, 1211 (1974).10.1063/1.1694867
    [3]
    J. F. Myatt, J. Zhang, R. W. Short, A. V. Maximov, W. Seka, D. H. Froula, D. H. Edgell, D. T. Michel, I. V. Igumenshchev, D. E. Hinkel, P. Michel, and J. D. Moody, “Multiple-beam laser–plasma interactions in inertial confinement fusion,” Phys. Plasmas 21, 055501 (2014).10.1063/1.4878623
    [4]
    W. L. Kruer, S. C. Wilks, B. B. Afeyan, and R. K. Kirkwood, “Energy transfer between crossing laser beams,” Phys. Plasmas 3, 382–385 (1996).10.1063/1.871863
    [5]
    C. J. McKinstrie, J. S. Li, R. E. Giacone, and H. X. Vu, “Two-dimensional analysis of the power transfer between crossed laser beams,” Phys. Plasmas 3, 2686–2692 (1996).10.1063/1.871721
    [6]
    M. A. Mostrom and A. N. Kaufman, “Raman side-scatter instability in nonuniform plasma,” Phys. Rev. Lett. 42, 644–647 (1979).10.1103/physrevlett.42.644
    [7]
    C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng, Y. Zhao, and X. T. He, “On the stimulated Raman sidescattering in inhomogeneous plasmas: Revisit of linear theory and three-dimensional particle-in-cell simulations,” Plasma Phys. Controlled Fusion 60, 025020 (2018).10.1088/1361-6587/aa9b41
    [8]
    P. Michel, L. Divol, E. L. Dewald, J. L. Milovich, M. Hohenberger, O. S. Jones, L. B. Hopkins, R. L. Berger, W. L. Kruer, and J. D. Moody, “Multibeam stimulated Raman scattering in inertial confinement fusion conditions,” Phys. Rev. Lett. 115, 055003 (2015).10.1103/physrevlett.115.055003
    [9]
    E. L. Dewald, F. Hartemann, P. Michel, J. Milovich, M. Hohenberger, A. Pak, O. L. Landen, L. Divol, H. F. Robey, O. A. Hurricane, T. Döppner, F. Albert, B. Bachmann, N. B. Meezan, A. J. MacKinnon, D. Callahan, and M. J. Edwards, “Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums,” Phys. Rev. Lett. 116, 075003 (2016).10.1103/physrevlett.116.075003
    [10]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
    [11]
    R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
    [12]
    S. Depierreux, C. Neuville, C. Baccou, V. Tassin, M. Casanova, P.-E. Masson-Laborde, N. Borisenko, A. Orekhov, A. Colaitis, A. Debayle, G. Duchateau, A. Heron, S. Huller, P. Loiseau, P. Nicolaï, D. Pesme, C. Riconda, G. Tran, R. Bahr, J. Katz, C. Stoeckl, W. Seka, V. Tikhonchuk, and C. Labaune, “Experimental investigation of the collective Raman scattering of multiple laser beams in inhomogeneous plasmas,” Phys. Rev. Lett. 117, 235002 (2016).10.1103/physrevlett.117.235002
    [13]
    M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel, M. Hohenberger, R. W. Short, R. Epstein, S. P. Regan, E. M. Campbell, T. Chapman, C. Goyon, J. E. Ralph, M. A. Barrios, J. D. Moody, and J. W. Bates, “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/physrevlett.120.055001
    [14]
    P. Michel, M. J. Rosenberg, W. Seka, A. A. Solodov, R. W. Short, T. Chapman, C. Goyon, N. Lemos, M. Hohenberger, J. D. Moody, S. P. Regan, and J. F. Myatt, “Theory and measurements of convective Raman side scatter in inertial confinement fusion experiments,” Phys. Rev. E 99, 033203 (2019).10.1103/physreve.99.033203
    [15]
    G. Cristoforetti, L. Antonelli, D. Mancelli, S. Atzeni, F. Baffigi, F. Barbato, D. Batani, G. Boutoux, F. D’Amato, and J. Dostal, “Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma,” High Power Laser Sci. Eng. 7, e51 (2019).10.1017/hpl.2019.37
    [16]
    [17]
    J. Zhang, W. M. Wang, X. H. Yang, D. Wu, Y. Y. Ma, J. L. Jiao, Z. Zhang, F. Y. Wu, X. H. Yuan, Y. T. Li, and J. Q. Zhu, “Double-cone ignition scheme for inertial confinement fusion,” Philos. Trans. R. Soc., A 378, 20200015 (2020).10.1098/rsta.2020.0015
    [18]
    C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20, 123001 (2018).10.1088/2040-8986/aaeb7d
    [19]
    Q. Zhan, “Cylindrical vector beams: From mathematical concepts to applications,” Adv. Opt. Photonics 1, 1 (2009).10.1364/aop.1.000001
    [20]
    X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).10.1364/ol.32.003549
    [21]
    H. T. Wang, X. L. Wang, Y. Li, J. Chen, C. S. Guo, and J. Ding, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).10.1364/oe.18.010786
    [22]
    R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26, 062111 (2019).10.1063/1.5098479
    [23]
    Y. Zhao, C. F. Wu, S. Weng, Z. Sheng, and J. Zhu, “Mitigation of multibeam stimulated Raman scattering with polychromatic light,” Plasma Phys. Controlled Fusion 63, 055006 (2021).10.1088/1361-6587/abe75a
    [24]
    H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
    [25]
    D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004).10.1364/ao.43.006639
    [26]
    S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys 66, 3456–3462 (1989).10.1063/1.344101
    [27]
    I. Barth and N. J. Fisch, “Reducing parametric backscattering by polarization rotation,” Phys. Plasmas 23, 102106 (2016).10.1063/1.4964291
    [28]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [29]
    T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, “Observation of optical polarization Möbius strips,” Science 347, 964–966 (2015).10.1126/science.1260635
    [30]
    M. J. Padgett, “Orbital angular momentum 25 years on [invited],” Opt. Express 25(10), 11265–11274 (2017).10.1364/oe.25.011265
    [31]
    H. Wen, A. V. Maximov, R. Yan, J. Li, C. Ren, and F. S. Tsung, “Three-dimensional particle-in-cell modeling of parametric instabilities near the quarter-critical density in plasmas,” Phys. Rev. E 100, 041201 (2019).10.1103/physreve.100.041201
    [32]
    C. Xiao, H. Zhuo, Y. Yin, Z. Liu, C. Zheng, and X. He, “Transition from two-plasmon decay to stimulated Raman scattering under ignition conditions,” Nucl. Fusion 60, 016022 (2020).10.1088/1741-4326/ab4e79
    [33]
    K. Q. Pan, S. E. Jiang, Q. Wang, L. Guo, S. W. Li, Z. C. Li, D. Yang, C. Y. Zheng, B. H. Zhang, and X. T. He, “Two-plasmon decay instability of the backscattered light of stimulated Raman scattering,” Nucl. Fusion 58, 096035 (2018).10.1088/1741-4326/aad059
    [34]
    R. Yan, A. V. Maximov, and C. Ren, “The linear regime of the two-plasmon decay instability in inhomogeneous plasmas,” Phys. Plasmas 17, 052701 (2010).10.1063/1.3414350
    [35]
    B. B. Afeyan and E. A. Williams, “Stimulated Raman sidescattering with the effects of oblique incidence,” Phys. Fluids 28, 3397 (1985).10.1063/1.865340
    [36]
    D. Turnbull, P. Michel, J. E. Ralph, L. Divol, J. S. Ross, L. F. Berzak Hopkins, A. L. Kritcher, D. E. Hinkel, and J. D. Moody, “Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments,” Phys. Rev. Lett. 114, 125001 (2015).10.1103/physrevlett.114.125001
    [37]
    J. Qiu, L. Hao, L. Cao, and S. Zou, “Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave,” Matter Radiat. Extremes 6, 065903 (2021).10.1063/5.0062902
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (50) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return