Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Zagidullin Rishat, Tietze Stefan, Zepf Matt, Wang Jingwei, Rykovanov Sergey. Density-dependent carrier-envelope phase shift in attosecond pulse generation from relativistically oscillating mirrors[J]. Matter and Radiation at Extremes, 2023, 8(6): 064004. doi: 10.1063/5.0155957
Citation: Zagidullin Rishat, Tietze Stefan, Zepf Matt, Wang Jingwei, Rykovanov Sergey. Density-dependent carrier-envelope phase shift in attosecond pulse generation from relativistically oscillating mirrors[J]. Matter and Radiation at Extremes, 2023, 8(6): 064004. doi: 10.1063/5.0155957

Density-dependent carrier-envelope phase shift in attosecond pulse generation from relativistically oscillating mirrors

doi: 10.1063/5.0155957
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: zagidullinrishat@gmail.com
  • Received Date: 2023-04-25
  • Accepted Date: 2023-08-21
  • Available Online: 2023-11-01
  • Publish Date: 2023-11-01
  • The carrier-envelope phase (CEP) φ0 is one of the key parameters in the generation of isolated attosecond pulses. In particular, “cosine” pulses (φ0 = 0) are best suited for generation of single attosecond pulses in atomic media. Such “cosine” pulses have the peak of the most intense cycle aligned with the peak of the pulse envelope, and therefore have the highest contrast between the peak intensity and the neighboring cycles. In this paper, the dynamics of single attosecond pulse generation from a relativistically oscillating plasma mirror is investigated. We use an elementary analytical model as well as particle-in-cell simulations to study few-cycle attosecond pulses. We find that the phase of the field driving the surface oscillations depends on the plasma density and preplasma scale length. This leads us to a counterintuitive conclusion: for the case of normal incidence and a sharp plasma–vacuum boundary, the CEP required for the generation of a single attosecond pulse phase is closer to φ0 = π/2 (a “sine” pulse), with the exact value depending on the plasma parameters.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Rishat Zagidullin: Software (equal); Validation (equal). Stefan Tietze: Visualization (equal); Writing – original draft (equal). M. Zepf: Conceptualization (equal); Formal analysis (equal); Methodology (equal). Jingwei Wang: Conceptualization (equal); Formal analysis (equal); Methodology (equal); Writing – review & editing (equal). Sergey G. Rykovanov: Conceptualization (equal); Formal analysis (equal); Methodology (equal); Writing – review & editing (equal).
    Data sharing is not applicable to this article as no new data were created or analyzed in this study. Simulation and visualization scripts are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).10.1103/RevModPhys.81.163
    [2]
    G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5, 655–663 (2011).10.1038/nphoton.2011.167
    [3]
    A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. Yakovlev, A. Scrinzi, T. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).10.1038/nature01414
    [4]
    G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443 (2006).10.1126/science.1132838
    [5]
    P. Tzallas, E. Skantzakis, C. Kalpouzos, E. Benis, G. Tsakiris, and D. Charalambidis, “Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields,” Nat. Phys. 3, 846–850 (2007).10.1038/nphys747
    [6]
    M. Lewenstein, P. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).10.1103/physreva.49.2117
    [7]
    R. Lichters, J. Meyer-ter Vehn, and A. Pukhov, “Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity,” Phys. Plasmas 3, 3425–3437 (1996).10.1063/1.871619
    [8]
    P. Norreys, M. Zepf, S. Moustaizis, A. Fews, J. Zhang, P. Lee, M. Bakarezos, C. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. Walsh, J. Wark, and A. Dangor, “Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets,” Phys. Rev. Lett. 76, 1832–1835 (1996).10.1103/physrevlett.76.1832
    [9]
    B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2, 456–459 (2006).10.1038/nphys338
    [10]
    B. Dromey, D. Adams, R. Hörlein, Y. Nomura, S. Rykovanov, D. Carroll, P. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G. Tsakiris, and M. Zepf, “Diffraction-limited performance and focusing of high harmonics from relativistic plasmas,” Nat. Phys. 5, 146–152 (2009).10.1038/nphys1158
    [11]
    Y. Nomura, R. Horlein, P. Tzallas, B. Dromey, S. Rykovanov, Z. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, and G. Tsakiris, “Attosecond phase locking of harmonics emitted from laser-produced plasmas,” Nat. Phys. 5, 124–128 (2009).10.1038/nphys1155
    [12]
    F. Quéré, C. Thaury, J.-P. Geindre, G. Bonnaud, P. Monot, and P. Martin, “Phase properties of laser high-order harmonics generated on plasma mirrors,” Phys. Rev. Lett. 100, 095004 (2008).10.1103/physrevlett.100.095004
    [13]
    P. Heissler, R. Hörlein, M. Stafe, J. Mikhailova, Y. Nomura, D. Herrmann, R. Tautz, S. Rykovanov, I. Földes, K. Varjú, F. Tavella, A. Marcinkevicius, F. Krausz, L. Veisz, and G. Tsakiris, “Toward single attosecond pulses using harmonic emission from solid-density plasmas,” Appl. Phys. B 101, 511–521 (2010).10.1007/s00340-010-4281-6
    [14]
    C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109, 125002 (2012).10.1103/physrevlett.109.125002
    [15]
    P. Heissler, R. Hörlein, J. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C. Sears, F. Krausz, L. Veisz, M. Zepf, and G. Tsakiris, “Few-cycle driven relativistically oscillating plasma mirrors: A source of intense isolated attosecond pulses,” Phys. Rev. Lett. 108, 235003 (2012).10.1103/physrevlett.108.235003
    [16]
    S. Mondal, M. Shirozhan, N. Ahmed, M. Bocoum, F. Boehle, A. Vernier, S. Haessler, R. Lopez-Martens, F. Sylla, C. Sire, F. Quéré, K. Nelissen, K. Varjú, D. Charalambidis, and S. Kahaly, “Surface plasma attosource beamlines at ELI-ALPS,” J. Opt. Soc. Am. B 35, A93 (2018).10.1364/josab.35.000a93
    [17]
    F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, and P. Audebert, “Coherent wake emission of high-order harmonics from overdense plasmas,” Phys. Rev. Lett. 96, 125004 (2006).10.1103/physrevlett.96.125004
    [18]
    U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81, 445–479 (2009).10.1103/revmodphys.81.445
    [19]
    C. Thaury and F. Quéré, “High-order harmonic and attosecond pulse generation on plasma mirrors: Basic mechanisms,” J. Phys. B: At., Mol. Opt. Phys. 43, 213001 (2010).10.1088/0953-4075/43/21/213001
    [20]
    D. an der Brügge and A. Pukhov, “Enhanced relativistic harmonics by electron nanobunching,” Phys. Plasmas 17, 033110 (2010).10.1063/1.3353050
    [21]
    B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. Fernandez, C. Lewis, M. Zepf, and B. Hegelich, “Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas,” New J. Phys. 15, 015025 (2013).10.1088/1367-2630/15/1/015025
    [22]
    B. Dromey, S. Rykovanov, M. Yeung, R. Hörlein, D. Jung, D. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, H. Ruhl, J. Fernandez, C. Lewis, M. Zepf, and B. Hegelich, “Coherent synchrotron emission from electron nanobunches formed in relativistic laser–plasma interactions,” Nat. Phys. 8, 804–808 (2012).10.1038/nphys2439
    [23]
    V. Platonenko and V. Strelkov, “Single attosecond soft-x-ray pulse generated with a limited laser beam,” J. Opt. Soc. Am. B 16, 435 (1999).10.1364/josab.16.000435
    [24]
    M. Valialshchikov, V. Kharin, and S. Rykovanov, “Narrow bandwidth gamma comb from nonlinear Compton scattering using the polarization gating technique,” Phys. Rev. Lett. 126, 194801 (2021).10.1103/physrevlett.126.194801
    [25]
    M. Valialshchikov, V. Kharin, and S. Rykovanov, “Polarisation gating technique in nonlinear Compton scattering: Effect of radiation friction and electron beam nonideality,” Quantum Electron. 51, 812 (2021).10.1070/qel17616
    [26]
    A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).10.1038/nphys2269
    [27]
    M. Yeung, B. Dromey, S. Cousens, T. Dzelzainis, D. Kiefer, J. Schreiber, J. Bin, W. Ma, C. Kreuzer, J. Meyer-ter Vehn, M. Streeter, P. Foster, S. Rykovanov, and M. Zepf, “Dependence of laser-driven coherent synchrotron emission efficiency on pulse ellipticity and implications for polarization gating,” Phys. Rev. Lett. 112, 123902 (2014).10.1103/physrevlett.112.123902
    [28]
    M. Yeung, J. Bierbach, E. Eckner, S. Rykovanov, S. Kuschel, A. Sävert, M. Förster, C. Rödel, G. Paulus, S. Cousens, M. Coughlan, B. Dromey, and M. Zepf, “Noncollinear polarization gating of attosecond pulse trains in the relativistic regime,” Phys. Rev. Lett. 115, 193903 (2015).10.1103/physrevlett.115.193903
    [29]
    G. Tsakiris, K. Eidmann, J. Meyer-ter Vehn, and F. Krausz, “Route to intense single attosecond pulses,” New J. Phys. 8, 19 (2006).10.1088/1367-2630/8/1/019
    [30]
    G. Ma, W. Dallari, A. Borot, F. Krausz, W. Yu, G. Tsakiris, and L. Veisz, “Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses,” Phys. Plasmas 22, 033105 (2015).10.1063/1.4914087
    [31]
    L. Liu, C. Xia, J. Liu, W. Wang, Y. Cai, C. Wang, R. Li, and Z. Xu, “Control of single attosecond pulse generation from the reflection of a synthesized relativistic laser pulse on a solid surface,” Phys. Plasmas 15, 103107 (2008).10.1063/1.2997342
    [32]
    S. Rykovanov, M. Geissler, J. Meyer-ter Vehn, and G. Tsakiris, “Intense single attosecond pulses from surface harmonics using the polarization gating technique,” New J. Phys. 10, 025025 (2008).10.1088/1367-2630/10/2/025025
    [33]
    D. Kormin, A. Borot, G. Ma, W. Dallari, B. Bergues, M. Aladi, I. Földes, and L. Veisz, “Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces,” Nat. Commun. 9, 4992 (2018).10.1038/s41467-018-07421-5
    [34]
    O. Jahn, V. Leshchenko, P. Tzallas, A. Kessel, M. Krüger, A. Münzer, S. Trushin, G. Tsakiris, S. Kahaly, D. Kormin, L. Veisz, V. Pervak, F. Krausz, Z. Major, and S. Karsch, “Towards intense isolated attosecond pulses from relativistic surface high harmonics,” Optica 6, 280–287 (2019).10.1364/optica.6.000280
    [35]
    B. I. Bleaney and B. Bleaney, Electricity and Magnetism, 3rd ed. (Oxford University Press, London, 1976).
    [36]
    S. Rykovanov, H. Ruhl, J. Meyer-ter Vehn, R. Hörlein, B. Dromey, M. Zepf, and G. Tsakiris, “Plasma surface dynamics and smoothing in the relativistic few-cycle regime,” New J. Phys. 13, 023008 (2011).10.1088/1367-2630/13/2/023008
    [37]
    J. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
    [38]
    M. Geissler, S. Rykovanov, J. Schreiber, J. Meyer-ter Vehn, and G. Tsakiris, “3D simulations of surface harmonic generation with few-cycle laser pulses,” New J. Phys. 9, 218 (2007).10.1088/1367-2630/9/7/218
    [39]
    B. Dromey, S. Rykovanov, D. Adams, R. Hörlein, Y. Nomura, D. Carroll, P. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G. Tsakiris, and M. Zepf, “Tunable enhancement of high harmonic emission from laser solid interactions,” Phys. Rev. Lett. 102, 225002 (2009).10.1103/physrevlett.102.225002
    [40]
    S. Bulanov, N. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745 (1994).10.1063/1.870766
    [41]
    A. Debayle, J. Sanz, L. Gremillet, and K. Mima, “Toward a self-consistent model of the interaction between an ultra-intense, normally incident laser pulse with an overdense plasma,” Phys. Plasmas 20, 053107 (2013).10.1063/1.4807335
    [42]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, and M. Grech, “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
    [43]
    I. Zacharov, R. Arslanov, M. Gunin, D. Stefonishin, A. Bykov, S. Pavlov, O. Panarin, A. Maliutin, S. Rykovanov, and M. Fedorov, “‘Zhores’—Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology,” Open Eng. 9, 512–520 (2019).10.1515/eng-2019-0059
    [44]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (34) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return