Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Kojima Sadaoki, Miyatake Tatsuhiko, Sakaki Hironao, Kuroki Hiroyoshi, Shimizu Yusuke, Harada Hisanori, Inoue Norihiro, Dinh Thanh Hung, Hata Masayasu, Hasegawa Noboru, Mori Michiaki, Ishino Masahiko, Nishiuchi Mamiko, Kondo Kotaro, Nishikino Masaharu, Kando Masaki, Shirai Toshiyuki, Kondo Kiminori. Induction heating for desorption of surface contamination for high-repetition laser-driven carbon-ion acceleration[J]. Matter and Radiation at Extremes, 2023, 8(5): 054002. doi: 10.1063/5.0153578
Citation: Kojima Sadaoki, Miyatake Tatsuhiko, Sakaki Hironao, Kuroki Hiroyoshi, Shimizu Yusuke, Harada Hisanori, Inoue Norihiro, Dinh Thanh Hung, Hata Masayasu, Hasegawa Noboru, Mori Michiaki, Ishino Masahiko, Nishiuchi Mamiko, Kondo Kotaro, Nishikino Masaharu, Kando Masaki, Shirai Toshiyuki, Kondo Kiminori. Induction heating for desorption of surface contamination for high-repetition laser-driven carbon-ion acceleration[J]. Matter and Radiation at Extremes, 2023, 8(5): 054002. doi: 10.1063/5.0153578

Induction heating for desorption of surface contamination for high-repetition laser-driven carbon-ion acceleration

doi: 10.1063/5.0153578
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: kojima.sadaoki@qst.go.jp
  • Received Date: 2023-04-10
  • Accepted Date: 2023-07-10
  • Available Online: 2023-09-01
  • Publish Date: 2023-09-01
  • This study reports the first experimental demonstration of surface contamination cleaning from a high-repetition supply of thin-tape targets for laser-driven carbon-ion acceleration. The adsorption of contaminants containing protons, mainly water vapor and hydrocarbons, on the surface of materials exposed to low vacuum (>10−3 Pa) suppresses carbon-ion acceleration. The newly developed contamination cleaner heats a 5-μm-thick nickel tape to over 400 °C in 100 ms by induction heating. In the future, this heating method could be scaled to laser-driven carbon-ion acceleration at rates beyond 10 Hz. The contaminant hydrogen is eliminated from the heated nickel surface, and a carbon source layer—derived from the contaminant carbon—is spontaneously formed by the catalytic effect of nickel. The species of ions accelerated from the nickel film heated to various temperatures have been observed experimentally. When the nickel film is heated beyond ∼150 °C, the proton signal considerably decreases, with a remarkable increase in the number and energy of carbon ions. The Langmuir adsorption model adequately explains the temperature dependence of desorption and re-adsorption of the adsorbed molecules on a heated target surface, and the temperature required for proton-free carbon-ion acceleration can be estimated.
  • loading
  • [1]
    K. Ledingham, P. Bolton, N. Shikazono, and C.-M. Ma, “Towards laser driven hadron cancer radiotherapy,” Appl. Sci. 4, 402 (2014).10.3390/app4030402
    [2]
    T. D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D. S. Seneviratne, and D. M. Trifiletti, “Carbon ion therapy: A modern review of an emerging technology,” Front. Oncol. 10, 82 (2020).10.3389/fonc.2020.00082
    [3]
    H. Ishikawa, Y. Hiroshima, N. Kanematsu, T. Inaniwa, T. Shirai, R. Imai, H. Suzuki, K. Akakura, M. Wakatsuki, T. Ichikawa, and H. Tsuji, “Carbon-ion radiotherapy for urological cancers,” Int. J. Urol. 29, 1109 (2022).10.1111/iju.14950
    [4]
    A. Pompos, R. L. Foote, A. C. Koong, Q. T. Le, R. Mohan, H. Paganetti, and H. Choy, “National effort to re-establish heavy ion cancer therapy in the United States,” Front. Oncol. 12, 880712 (2022).10.3389/fonc.2022.880712
    [5]
    U. Amaldi, R. Bonomi, S. Braccini, M. Crescenti, A. Degiovanni, M. Garlasché, A. Garonna, G. Magrin, C. Mellace, P. Pearce, G. Pittà, P. Puggioni, E. Rosso, S. Verdú Andrés, R. Wegner, M. Weiss, and R. Zennaro, “Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs,” Nucl. Instrum. Methods Phys. Res., Sect. A 620, 563 (2010).10.1016/j.nima.2010.03.130
    [6]
    N. Kanematsu, T. Furukawa, Y. Hara, T. Inaniwa, Y. Iwata, K. Mizushima, S. Mori, and T. Shirai, “New technologies for carbon-ion radiotherapy—Developments at the National Institute of Radiological Sciences, QST, Japan,” Radiat. Phys. Chem. 162, 90 (2019).10.1016/j.radphyschem.2019.04.038
    [7]
    Y. Iwata, T. Shirai, K. Mizushima, S. Matsuba, Y. Yang, E. Noda, M. Urata, M. Muramatsu, K. Katagiri, S. Yonai, T. Inaniwa, S. Sato, Y. Abe, T. Fujimoto, T. Sasano, T. Shiraishi, T. Suzuki, K. Takahashi, K. Kondo, H. Sakaki, M. Nishiuchi, T. Orikasa, S. Takayama, S. Amano, K. Nakanishi, M. Tachibana, Y. Touchi, S. Tsubomatsu, and S. Nomura, “Design of a compact superconducting accelerator for advanced heavy-ion therapy,” Nucl. Instrum. Methods Phys. Res., Sect. A 1053, 168312 (2023).10.1016/j.nima.2023.168312
    [8]
    R. Lera, P. Bellido, I. Sanchez, P. Mur, M. Seimetz, J. M. Benlloch, M. Roso, L. Ruiz-de-la-Cruz, and A. Ruiz-De-La-Cruz, “Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration,” Appl. Phys. B 125, 4 (2019).10.1007/s00340-018-7113-8
    [9]
    S. Borneis, T. Laštovička, M. Sokol, T.-M. Jeong, F. Condamine, O. Renner, V. Tikhonchuk, H. Bohlin, A. Fajstavr, J.-C. Hernandez, N. Jourdain, D. Kumar, D. Modřanský, A. Pokorný, A. Wolf, S. Zhai, G. Korn, and S. Weber, “Design, installation and commissioning of the ELI-Beamlines high-power, high-repetition rate HAPLS laser beam transport system to P3,” High Power Laser Sci. Eng. 9, e30 (2021).10.1017/hpl.2021.16
    [10]
    X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on Ni and Cu by carbon isotope labeling,” Nano Lett. 9, 4268 (2009).10.1021/nl902515k
    [11]
    B. M. Hegelich, B. J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R. K. Schulze, and J. C. Fernández, “Laser acceleration of quasi-monoenergetic MeV ion beams,” Nature 439, 441 (2006).10.1038/nature04400
    [12]
    M. Noaman-ul-Haq, H. Ahmed, T. Sokollik, L. Yu, Z. Liu, X. Yuan, F. Yuan, M. Mirzaie, X. Ge, L. Chen, and J. Zhang, “Statistical analysis of laser driven protons using a high-repetition-rate tape drive target system,” Phys. Rev. Accel. Beams 20, 041301 (2017).10.1103/physrevaccelbeams.20.041301
    [13]
    M. Nishikino, Y. Ochi, N. Hasegawa, T. Kawachi, H. Yamatani, T. Ohba, T. Kaihori, and K. Nagashima, “Demonstration of a highly coherent 13.9 nm x-ray laser from a silver tape target,” Rev. Sci. Instrum. 80, 116102 (2009).10.1063/1.3262634
    [14]
    C. Ruiz, J. Benlliure, D. Cortina, D. González, J. Llerena, and L. Martín, “Development of a multi-shot experiment for proton acceleration,” J. Phys.: Conf. Ser. 1079, 012009 (2018).10.1088/1742-6596/1079/1/012009
    [15]
    G. M. Petrov, L. Willingale, J. Davis, T. Petrova, A. Maksimchuk, and K. Krushelnick, “The impact of contaminants on laser-driven light ion acceleration,” Phys. Plasmas 17, 103111 (2010).10.1063/1.3497002
    [16]
    P. Mora, “Plasma expansion into a vacuum,” Phys. Rev. Lett. 90, 185002 (2003).10.1103/physrevlett.90.185002
    [17]
    Y. Sentoku, T. E. Cowan, A. Kemp, and H. Ruhl, “High energy proton acceleration in interaction of short laser pulse with dense plasma target,” Phys. Plasmas 10, 2009 (2003).10.1063/1.1556298
    [18]
    Z. Lécz, J. Budai, A. Andreev, and S. Ter-Avetisyan, “Thickness of natural contaminant layers on metal surfaces and its effects on laser-driven ion acceleration,” Phys. Plasmas 27, 013105 (2020).10.1063/1.5123542
    [19]
    M. Allen, P. K. Patel, A. Mackinnon, D. Price, S. Wilks, and E. Morse, “Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils,” Phys. Rev. Lett. 93, 265004 (2004).10.1103/physrevlett.93.265004
    [20]
    K. Fukutani, “Surfaces in vacuum technology,” J. Vac. Soc. Jpn. 56, 204 (2013).10.3131/jvsj2.56.204
    [21]
    P. Sommer, J. Metzkes-Ng, F. E. Brack, T. E. Cowan, S. D. Kraft, L. Obst, M. Rehwald, H. P. Schlenvoigt, U. Schramm, and K. Zeil, “Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration,” Plasma Phys. Controlled Fusion 60, 054002 (2018).10.1088/1361-6587/aab21e
    [22]
    M. Hegelich, S. Karsch, G. Pretzler, D. Habs, K. Witte, W. Guenther, M. Allen, A. Blazevic, J. Fuchs, J. C. Gauthier, M. Geissel, P. Audebert, T. Cowan, and M. Roth, “MeV ion jets from short-pulse-laser interaction with thin foils,” Phys. Rev. Lett. 89, 085002 (2002).10.1103/PhysRevLett.89.085002
    [23]
    D. T. Offermann, K. A. Flippo, S. A. Gaillard, D. C. Gautier, S. Letzring, J. C. Cobble, G. Wurden, R. P. Johnson, T. Shimada, D. S. Montgomery, R. P. Gonzales, T. Hurry, F. Archuleta, M. J. Schmitt, S. M. Reid, T. Bartal, M. S. Wei, D. P. Higginson, F. N. Beg, M. Geissel, and M. Schollmeier, “Carbon ion beam focusing using laser irradiated, heated diamond hemispherical shells,” J. Phys.: Conf. Ser. 244, 022053 (2010).10.1088/1742-6596/244/2/022053
    [24]
    K. Kondo, M. Nishiuchi, H. Sakaki, N. P. Dover, H. F. Lowe, T. Miyahara, Y. Watanabe, T. Ziegler, K. Zeil, U. Schramm, E. J. Ditter, G. S. Hicks, O. C. Ettlinger, Z. Najmudin, H. Kiriyama, M. Kando, and K. Kondo, “High-intensity laser-driven oxygen source from CW laser-heated titanium tape targets,” Crystals 10, 837 (2020).10.3390/cryst10090837
    [25]
    V. Rudnev, D. Loveless, and R. L. Cook, Handbook of Induction Heating, 2nd ed. (CRC Press, Routledge, 2017).
    [26]
    [27]
    L. Abadlia, F. Gasser, K. Khalouk, M. Mayoufi, and J. G. Gasser, “New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures,” Rev. Sci. Instrum. 85, 095121 (2014).10.1063/1.4896046
    [28]
    J. Yin, H. Zhu, L. Ke, P. Hu, C. He, H. Zhang, and X. Zeng, “A finite element model of thermal evolution in laser micro sintering,” Int. J. Adv. Manuf. Technol. 83, 1847 (2016).10.1007/s00170-015-7609-x
    [29]
    J. L. Glathart, “The inner, initial, magnetic permeability of iron and nickel at ultra-high radiofrequencies,” Phys. Rev. 55, 833 (1939).10.1103/PhysRev.55.833
    [30]
    S. Kojima, S. Inoue, T. H. Dinh, N. Hasegawa, M. Mori, H. Sakaki, Y. Yamamoto, T. Sasaki, K. Shiokawa, K. Kondo, T. Yamanaka, M. Hashida, S. Sakabe, M. Nishikino, and K. Kondo, “Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions,” Rev. Sci. Instrum. 91, 053305 (2020).10.1063/5.0005450
    [31]
    J. Schreiber, M. Kaluza, F. Grüner, U. Schramm, B. M. Hegelich, J. Cobble, M. Geissler, E. Brambrink, J. Fuchs, P. Audebert, D. Habs, and K. Witte, “Source-size measurements and charge distributions of ions accelerated from thin foils irradiated by high-intensity laser pulses,” Appl. Phys. B: Lasers Opt. 79, 1041 (2004).10.1007/s00340-004-1665-5
    [32]
    K. Noda, “Progress of radiotherapy technology with HIMAC,” J. Phys.: Conf. Ser. 1154, 012019 (2019).10.1088/1742-6596/1154/1/012019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (47) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return