Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
De Marco Shivani Choudhary, Mondal Sudipta, Margarone Daniele, Kahaly Subhendu. Controlled transition to different proton acceleration regimes: Near-critical-density plasmas driven by circularly polarized few-cycle pulses[J]. Matter and Radiation at Extremes, 2023, 8(5): 054001. doi: 10.1063/5.0151751
Citation: De Marco Shivani Choudhary, Mondal Sudipta, Margarone Daniele, Kahaly Subhendu. Controlled transition to different proton acceleration regimes: Near-critical-density plasmas driven by circularly polarized few-cycle pulses[J]. Matter and Radiation at Extremes, 2023, 8(5): 054001. doi: 10.1063/5.0151751

Controlled transition to different proton acceleration regimes: Near-critical-density plasmas driven by circularly polarized few-cycle pulses

doi: 10.1063/5.0151751
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: subhendu.kahaly@eli-alps.hu
  • Received Date: 2023-03-24
  • Accepted Date: 2023-07-04
  • Available Online: 2023-09-01
  • Publish Date: 2023-09-01
  • A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up, depending on the region of operation. Based on numerical simulations conducted over a wide range of experimentally achievable parameter space, reported here is a comprehensive investigation of the different facets of ion acceleration by relativistically intense circularly polarized laser pulses interacting with thin near-critical-density plasma targets. The results show that the plasma thickness, exponential density gradient, and laser frequency chirp can be controlled to switch the interaction from the transparent operating regime to the opaque one, thereby enabling the choice of a Maxwellian-like ion energy distribution with a cutoff energy in the relativistically transparent regime or a quasi-monoenergetic spectrum in the opaque regime. Next, it is established that a multispecies target configuration can be used effectively for optimal generation of quasi-monoenergetic ion bunches of a desired species. Finally, the feasibility is demonstrated for generating monoenergetic proton beams with energy peak at E20–40 MeV and a narrow energy spread of ΔE/E18%–28.6% confined within a divergence angle of ∼175 mrad at a reasonable laser peak intensity of I0 ≃ 5.4 × 1020 W/cm2.
  • loading
  • [1]
    L. Fedeli, A. Formenti, L. Cialfi, A. Pazzaglia, and M. Passoni, “Ultra-intense laser interaction with nanostructured near-critical plasmas,” Sci. Rep. 8, 3834 (2018).10.1038/s41598-018-22147-6
    [2]
    L. Ji, B. Shen, and X. Zhang, “Transparency of near-critical density plasmas under extreme laser intensities,” New J. Phys. 20, 053043 (2018).10.1088/1367-2630/aac24b
    [3]
    F. Sylla, M. Veltcheva, S. Kahaly, A. Flacco, and V. Malka, “Development and characterization of very dense submillimetric gas jets for laser-plasma interaction,” Rev. Sci. Instrum. 83, 033507 (2012).10.1063/1.3697859
    [4]
    A. Lifschitz, F. Sylla, S. Kahaly, A. Flacco, M. Veltcheva, G. Sanchez-Arriaga, E. Lefebvre, and V. Malka, “Ion acceleration in underdense plasmas by ultra-short laser pulses,” New J. Phys. 16, 033031 (2014).10.1088/1367-2630/16/3/033031
    [5]
    S. Kahaly, F. Sylla, A. Lifschitz, A. Flacco, M. Veltcheva, and V. Malka, “Detailed experimental study of ion acceleration by interaction of an ultra-short intense laser with an underdense plasma,” Sci. Rep. 6, 31647 (2016).10.1038/srep31647
    [6]
    J. L. Henares, P. Puyuelo-Valdes, F. Hannachi, T. Ceccotti, M. Ehret, F. Gobet, L. Lancia, J.-R. Marquès, J. J. Santos, M. Versteegen, and M. Tarisien, “Development of gas jet targets for laser-plasma experiments at near-critical density,” Rev. Sci. Instrum. 90, 063302 (2019).10.1063/1.5093613
    [7]
    A. Yogo, H. Daido, S. V. Bulanov, K. Nemoto, Y. Oishi, T. Nayuki, T. Fujii, K. Ogura, S. Orimo, A. Sagisaka, J.-L. Ma, T. Z. Esirkepov, M. Mori, M. Nishiuchi, A. S. Pirozhkov, S. Nakamura, A. Noda, H. Nagatomo, T. Kimura, and T. Tajima, “Laser ion acceleration via control of the near-critical density target,” Phys. Rev. E 77, 016401 (2008).10.1103/physreve.77.016401
    [8]
    A. Pazzaglia, L. Fedeli, A. Formenti, A. Maffini, and M. Passoni, “A theoretical model of laser-driven ion acceleration from near-critical double-layer targets,” Commun. Phys. 3, 133 (2020).10.1038/s42005-020-00400-7
    [9]
    B. Martinez, E. d’Humières, and L. Gremillet, “Synchrotron radiation from ultrahigh-intensity laser-plasma interactions and competition with Bremsstrahlung in thin foil targets,” Phys. Rev. Res. 2, 043341 (2020); arXiv:2006.16603.10.1103/physrevresearch.2.043341
    [10]
    P. Wang, G. Qi, Z. Pan, D. Kong, Y. Shou, J. Liu, Z. Cao, Z. Mei, S. Xu, Z. Liu, S. Chen, Y. Gao, J. Zhao, and W. Ma, “Fabrication of large-area uniform carbon nanotube foams as near-critical-density targets for laser–plasma experiments,” High Power Laser Sci. Eng. 9, e29 (2021).10.1017/hpl.2021.18
    [11]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [12]
    C. Radier, O. Chalus, M. Charbonneau, S. Thambirajah, G. Deschamps, S. David, J. Barbe, E. Etter, G. Matras, S. Ricaud, V. Leroux, C. Richard, F. Lureau, A. Baleanu, R. Banici, A. Gradinariu, C. Caldararu, C. Capiteanu, A. Naziru, B. Diaconescu, V. Iancu, R. Dabu, D. Ursescu, I. Dancus, C. A. Ur, K. A. Tanaka, and N. V. Zamfir, “10 PW peak power femtosecond laser pulses at ELI-NP,” High Power Laser Sci. Eng. 10, e21 (2022).10.1017/hpl.2022.11
    [13]
    S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle, T. Csizmadia, B. Farkas, B. Major, Z. Várallyay, E. Cormier, M. Kalashnikov, F. Calegari, M. Devetta, F. Frassetto, E. Månsson, L. Poletto, S. Stagira, C. Vozzi, M. Nisoli, P. Rudawski, S. Maclot, F. Campi, H. Wikmark, C. L. Arnold, C. M. Heyl, P. Johnsson, A. L’Huillier, R. Lopez-Martens, S. Haessler, M. Bocoum, F. Boehle, A. Vernier, G. Iaquaniello, E. Skantzakis, N. Papadakis, C. Kalpouzos, P. Tzallas, F. Lépine, D. Charalambidis, K. Varjú, K. Osvay, and G. Sansone, “The ELI-ALPS facility: The next generation of attosecond sources,” J. Phys. B: At., Mol. Opt. Phys. 50, 132002 (2017).10.1088/1361-6455/aa6ee8
    [14]
    D. Charalambidis, V. Chikán, E. Cormier, P. Dombi, J. A. Fülöp, C. Janáky, S. Kahaly, M. Kalashnikov, C. Kamperidis, S. Kühn, F. Lepine, A. L’Huillier, R. Lopez-Martens, S. Mondal, K. Osvay, L. Óvári, P. Rudawski, G. Sansone, P. Tzallas, Z. Várallyay, and K. Varjú, “The extreme light infrastructure—Attosecond light pulse source (ELI-ALPS) project,” in Progress in Ultrafast Intense Laser Science XIII, Springer Series in Chemical Physics, edited by K. Yamanouch (Springer, Cham, 2017), pp. 181–218.
    [15]
    S. Mondal, M. Shirozhan, N. Ahmed, M. Bocoum, F. Boehle, A. Vernier, S. Haessler, R. Lopez-Martens, F. Sylla, C. Sire, F. Quéré, K. Nelissen, K. Varjú, D. Charalambidis, and S. Kahaly, “Surface plasma attosource beamlines at ELI-ALPS,” J. Opt. Soc. Am. B 35, A93 (2018).10.1364/josab.35.000a93
    [16]
    D. Margarone, G. Cirrone, G. Cuttone, A. Amico, L. Andò, M. Borghesi, S. Bulanov, S. Bulanov, D. Chatain, A. Fajstavr, L. Giuffrida, F. Grepl, S. Kar, J. Krasa, D. Kramer, G. Larosa, R. Leanza, T. Levato, M. Maggiore, L. Manti, G. Milluzzo, B. Odlozilik, V. Olsovcova, J.-P. Perin, J. Pipek, J. Psikal, G. Petringa, J. Ridky, F. Romano, B. Rus, A. Russo, F. Schillaci, V. Scuderi, A. Velyhan, R. Versaci, T. Wiste, M. Zakova, and G. Korn, “ELIMAIA: A laser-driven ion accelerator for multidisciplinary applications,” Quantum Beam Sci. 2, 8 (2018).10.3390/qubs2020008
    [17]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).10.1103/revmodphys.85.751
    [18]
    J. Schreiber, P. R. Bolton, and K. Parodi, “Invited review article: ‘Hands-on’ laser-driven ion acceleration: A primer for laser-driven source development and potential applications,” Rev. Sci. Instrum. 87, 071101 (2016).10.1063/1.4959198
    [19]
    M. Passoni, F. M. Arioli, L. Cialfi, D. Dellasega, L. Fedeli, A. Formenti, A. C. Giovannelli, A. Maffini, F. Mirani, A. Pazzaglia, A. Tentori, D. Vavassori, M. Zavelani-Rossi, and V. Russo, “Advanced laser-driven ion sources and their applications in materials and nuclear science,” Plasma Phys. Controlled Fusion 62, 014022 (2019).10.1088/1361-6587/ab56c9
    [20]
    S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep. 28, 453–456 (2002).10.1134/1.1478534
    [21]
    S. V. Bulanov, J. J. Wilkens, T. Z. Esirkepov, G. Korn, G. Kraft, S. D. Kraft, M. Molls, and V. S. Khoroshkov, “Laser ion acceleration for hadron therapy,” Phys.-Usp. 57, 1149–1179 (2014).10.3367/ufne.0184.201412a.1265
    [22]
    L. Karsch, E. Beyreuther, W. Enghardt, M. Gotz, U. Masood, U. Schramm, K. Zeil, and J. Pawelke, “Towards ion beam therapy based on laser plasma accelerators,” Acta Oncol. 56, 1359–1366 (2017).10.1080/0284186x.2017.1355111
    [23]
    S. M. Weng, Z. M. Sheng, M. Murakami, M. Chen, M. Liu, H. C. Wang, T. Yuan, and J. Zhang, “Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition,” Matter Radiat. Extremes 3, 28–39 (2018), heavy-ion-driven fusion and HEDP (I).10.1016/j.mre.2017.09.002
    [24]
    M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436–439 (2001).10.1103/physrevlett.86.436
    [25]
    M. Barberio, M. Scisció, S. Valliéres, F. Cardelli, S. N. Chen, G. Famulari, T. Gangolf, G. Revet, A. Schiavi, M. Senzacqua, and P. Antici, “Laser-accelerated particle beams for stress testing of materials,” Nat. Commun. 9, 372 (2018).10.1038/s41467-017-02675-x
    [26]
    M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernández, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J. L. Tybo, F. Wagner, S. A. Wender, C. H. Wilde, and G. A. Wurden, “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/physrevlett.110.044802
    [27]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945–2948 (2000).10.1103/physrevlett.85.2945
    [28]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542–549 (2001).10.1063/1.1333697
    [29]
    P. Mora, “Plasma expansion into a vacuum,” Phys. Rev. Lett. 90, 185002 (2003).10.1103/physrevlett.90.185002
    [30]
    B. M. Hegelich, B. J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R. K. Schulze, and J. C. Fernández, “Laser acceleration of quasi-monoenergetic MeV ion beams,” Nature 439, 441 (2006).10.1038/nature04400
    [31]
    K. Ogura, M. Nishiuchi, A. S. Pirozhkov, T. Tanimoto, A. Sagisaka, T. Z. Esirkepov, M. Kando, T. Shizuma, T. Hayakawa, H. Kiriyama, T. Shimomura, S. Kondo, S. Kanazawa, Y. Nakai, H. Sasao, F. Sasao, Y. Fukuda, H. Sakaki, M. Kanasaki, A. Yogo, S. V. Bulanov, P. R. Bolton, and K. Kondo, “Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system,” Opt. Lett. 37, 2868–2870 (2012).10.1364/ol.37.002868
    [32]
    M. Passoni, L. Bertagna, and A. Zani, “Target normal sheath acceleration: Theory, comparison with experiments and future perspectives,” New J. Phys. 12, 045012 (2010).10.1088/1367-2630/12/4/045012
    [33]
    F. Kroll, F.-E. Brack, C. Bernert, S. Bock, E. Bodenstein, K. Brüchner, T. E. Cowan, L. Gaus, R. Gebhardt, U. Helbig, L. Karsch, T. Kluge, S. Kraft, M. Krause, E. Lessmann, U. Masood, S. Meister, J. Metzkes-Ng, A. Nossula, J. Pawelke, J. Pietzsch, T. Püschel, M. Reimold, M. Rehwald, C. Richter, H.-P. Schlenvoigt, U. Schramm, M. E. P. Umlandt, T. Ziegler, K. Zeil, and E. Beyreuther, “Tumour irradiation in mice with a laser-accelerated proton beam,” Nat. Phys. 18, 316–322 (2022).10.1038/s41567-022-01520-3
    [34]
    H.-G. Jason Chou, A. Grassi, S. H. Glenzer, and F. Fiuza, “Radiation pressure acceleration of high-quality ion beams using ultrashort laser pulses,” Phys. Rev. Res. 4, L022056 (2022).10.1103/physrevresearch.4.l022056
    [35]
    N. Iwata, S. Kojima, Y. Sentoku, M. Hata, and K. Mima, “Plasma density limits for hole boring by intense laser pulses,” Nat. Commun. 9, 623 (2018).10.1038/s41467-018-02829-5
    [36]
    A. P. L. Robinson, A. R. Bell, and R. J. Kingham, “Effect of target composition on proton energy spectra in ultraintense laser-solid interactions,” Phys. Rev. Lett. 96, 035005 (2006).10.1103/physrevlett.96.035005
    [37]
    A. P. L. Robinson, M. Zepf, S. Kar, R. G. Evans, and C. Bellei, “Radiation pressure acceleration of thin foils with circularly polarized laser pulses,” New J. Phys. 10, 013021 (2008).10.1088/1367-2630/10/1/013021
    [38]
    A. Macchi, S. Veghini, and F. Pegoraro, “‘Light sail’ acceleration reexamined,” Phys. Rev. Lett. 103, 085003 (2009).10.1103/physrevlett.103.085003
    [39]
    A. Macchi, S. Veghini, T. V. Liseykina, and F. Pegoraro, “Radiation pressure acceleration of ultrathin foils,” New J. Phys. 12, 045013 (2010).10.1088/1367-2630/12/4/045013
    [40]
    W. J. Ma, I. J. Kim, J. Q. Yu, I. W. Choi, P. K. Singh, H. W. Lee, J. H. Sung, S. K. Lee, C. Lin, Q. Liao, J. G. Zhu, H. Y. Lu, B. Liu, H. Y. Wang, R. F. Xu, X. T. He, J. E. Chen, M. Zepf, J. Schreiber, X. Q. Yan, and C. H. Nam, “Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil,” Phys. Rev. Lett. 122, 014803 (2019).10.1103/physrevlett.122.014803
    [41]
    P. Sprangle, E. Esarey, and A. Ting, “Nonlinear theory of intense laser-plasma interactions,” Phys. Rev. Lett. 64, 2011–2014 (1990).10.1103/physrevlett.64.2011
    [42]
    L. Fedeli, A. Formenti, C. E. Bottani, and M. Passoni, “Parametric investigation of laser interaction with uniform and nanostructured near-critical plasmas,” Eur. Phys. J. D 71, 202 (2017).10.1140/epjd/e2017-80222-7
    [43]
    F. Cattani, A. Kim, D. Anderson, and M. Lisak, “Threshold of induced transparency in the relativistic interaction of an electromagnetic wave with overdense plasmas,” Phys. Rev. E 62, 1234–1237 (2000).10.1103/physreve.62.1234
    [44]
    V. V. Goloviznin and T. J. Schep, “Self-induced transparency and self-induced opacity in laser-plasma interactions,” Phys. Plasmas 7, 1564–1571 (2000).10.1063/1.873976
    [45]
    E. Siminos, M. Grech, S. Skupin, T. Schlegel, and V. T. Tikhonchuk, “Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions,” Phys. Rev. E 86, 056404 (2012).10.1103/physreve.86.056404
    [46]
    J. C. Fernández, D. Cort Gautier, C. Huang, S. Palaniyappan, B. J. Albright, W. Bang, G. Dyer, A. Favalli, J. F. Hunter, J. Mendez et al., “Laser-plasmas in the relativistic-transparency regime: Science and applications,” Phys. Plasmas 24, 056702 (2017).10.1063/1.4983991
    [47]
    A. A. Sahai, F. S. Tsung, A. R. Tableman, W. B. Mori, and T. C. Katsouleas, “Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient,” Phys. Rev. E 88, 043105 (2013).10.1103/physreve.88.043105
    [48]
    P. L. Poole, L. Obst, G. E. Cochran, J. Metzkes, H.-P. Schlenvoigt, I. Prencipe, T. Kluge, T. Cowan, U. Schramm, D. W. Schumacher, and K. Zeil, “Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime,” New J. Phys. 20, 013019 (2018).10.1088/1367-2630/aa9d47
    [49]
    S. Palaniyappan, B. Manuel Hegelich, H.-C. Wu, D. Jung, D. C. Gautier, L. Yin, B. J. Albright, R. P. Johnson, T. Shimada, S. Letzring, D. T. Offermann, J. Ren, C. Huang, R. Hörlein, B. Dromey, J. C. Fernandez, and R. C. Shah, “Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas,” Nat. Phys. 8, 763 (2012).10.1038/nphys2390
    [50]
    A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely, and P. McKenna, “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9
    [51]
    P. K. Singh, F.-Y. Li, C.-K. Huang, A. Moreau, R. Hollinger, A. Junghans, A. Favalli, C. Calvi, S. Wang, Y. Wang, H. Song, J. J. Rocca, R. E. Reinovsky, and S. Palaniyappan, “Vacuum laser acceleration of super-ponderomotive electrons using relativistic transparency injection,” Nat. Commun. 13, 54 (2022); arXiv:2110.13942.10.1038/s41467-021-27691-w
    [52]
    F. Schillaci, L. Giuffrida, M. Tryus, F. Grepl, S. Stancek, A. Velyhan, V. Istokskaia, T. Levato, G. Petringa, G. A. P. Cirrone, J. Cupal, L. Koubiková, D. Peceli, J. A. Jarboe, T. de Castro Silva, M. Cuhra, T. Chagovets, V. Kantarelou, M. Tosca, V. Ivanyan, M. Greplová Žáková, J. Psikal, R. Truneček, A. Cimmino, R. Versaci, V. Olšovlcová, D. Kramer, P. Bakule, J. Ridky, G. Korn, B. Rus, and D. Margarone, “The ELIMAIA laser–plasma ion accelerator: Technological commissioning and perspectives,” Quantum Beam Sci. 6, 30 (2022).10.3390/qubs6040030
    [53]
    X. Liang, Y. Yi, S. Li, P. Zhu, X. Xie, H. Liu, G. Mu, Z. Liu, A. Guo, J. Kang, Q. Yang, H. Zhu, Q. Gao, M. Sun, H. Lu, Y. Ma, S. Mondal, D. Papp, S. Majorosi, Z. Lécz, A. Andreev, S. Kahaly, C. Kamperidis, N. A. M. Hafz, and J. Zhu, “A laser wakefield acceleration facility using SG-II petawatt laser system,” Rev. Sci. Instrum. 93, 033504 (2022).10.1063/5.0071761
    [54]
    N. P. Dover, T. Ziegler, S. Assenbaum, C. Bernert, S. Bock, F.-E. Brack, T. E. Cowan, E. J. Ditter, M. Garten, L. Gaus et al., “Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities,” Light: Sci. Appl. 12, 71 (2023).10.1038/s41377-023-01083-9
    [55]
    P. Kaw and J. Dawson, “Relativistic nonlinear propagation of laser beams in cold overdense plasmas,” Phys. Fluids 13, 472–481 (1970).10.1063/1.1692942
    [56]
    V. A. Vshivkov, N. M. Naumova, F. Pegoraro, and S. V. Bulanov, “Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil,” Phys. Plasmas 5, 2727–2741 (1998).10.1063/1.872961
    [57]
    [58]
    S. Choudhary and A. R. Holkundkar, “Efficient ion acceleration by relativistic self-induced transparency in subwavelength targets,” Eur. Phys. J. D 70, 234 (2016).10.1140/epjd/e2016-70391-2
    [59]
    L. Willingale, P. M. Nilson, A. G. R. Thomas, S. S. Bulanov, A. Maksimchuk, W. Nazarov, T. C. Sangster, C. Stoeckl, and K. Krushelnick, “High-power, kilojoule laser interactions with near-critical density plasma,” Phys. Plasmas 18, 056706 (2011).10.1063/1.3563438
    [60]
    L. Obst, S. Göde, M. Rehwald, F.-E. Brack, J. Branco, S. Bock, M. Bussmann, T. E. Cowan, C. B. Curry, F. Fiuza, M. Gauthier, R. Gebhardt, U. Helbig, A. Huebl, U. Hübner, A. Irman, L. Kazak, J. B. Kim, T. Kluge, S. Kraft, M. Loeser, J. Metzkes, R. Mishra, C. Rödel, H.-P. Schlenvoigt, M. Siebold, J. Tiggesbäumker, S. Wolter, T. Ziegler, U. Schramm, S. H. Glenzer, and K. Zeil, “Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets,” Sci. Rep. 7, 10248 (2017).10.1038/s41598-017-10589-3
    [61]
    J. Polz, A. P. L. Robinson, A. Kalinin, G. A. Becker, R. A. Costa Fraga, M. Hellwing, M. Hornung, S. Keppler, A. Kessler, D. Klöpfel, H. Liebetrau, F. Schorcht, J. Hein, M. Zepf, R. E. Grisenti, and M. C. Kaluza, “Efficient laser-driven proton acceleration from a cryogenic solid hydrogen target,” Sci. Rep. 9, 16534 (2019).10.1038/s41598-019-52919-7
    [62]
    A. Sundström, L. Gremillet, E. Siminos, and I. Pusztai, “Collisional effects on the electrostatic shock dynamics in thin-foil targets driven by an ultraintense short pulse laser,” Plasma Phys. Controlled Fusion 62, 085015 (2020).10.1088/1361-6587/ab9a62
    [63]
    I. M. Vladisavlevici, D. Vizman, and E. d’Humières, “Theoretical investigation of the interaction of ultra-high intensity laser pulses with near critical density plasmas,” Plasma Phys. Controlled Fusion 65, 045012 (2023).10.1088/1361-6587/acbe63
    [64]
    A. Macchi, T. V. Liseikina, S. Tuveri, and S. Veghini, “Theory and simulation of ion acceleration with circularly polarized laser pulses,” C. R. Phys. 10, 207–215 (2009).10.1016/j.crhy.2009.03.002
    [65]
    W. L. Kruer and K. Estabrook, “J×B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985).10.1063/1.865171
    [66]
    S. Guérin, P. Mora, J. C. Adam, A. Héron, and G. Laval, “Propagation of ultraintense laser pulses through overdense plasma layers,” Phys. Plasmas 3, 2693–2701 (1996).10.1063/1.871526
    [67]
    A. P. L. Robinson, P. Gibbon, M. Zepf, S. Kar, R. G. Evans, and C. Bellei, “Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses,” Plasma Phys. Controlled Fusion 51, 024004 (2009).10.1088/0741-3335/51/2/024004
    [68]
    A. P. L. Robinson, R. M. G. M. Trines, N. P. Dover, and Z. Najmudin, “Hole-boring radiation pressure acceleration as a basis for producing high-energy proton bunches,” Plasma Phys. Controlled Fusion 54, 115001 (2012).10.1088/0741-3335/54/11/115001
    [69]
    S. M. Weng, M. Murakami, P. Mulser, and Z. M. Sheng, “Ultra-intense laser pulse propagation in plasmas: From classic hole-boring to incomplete hole-boring with relativistic transparency,” New J. Phys. 14, 063026 (2012).10.1088/1367-2630/14/6/063026
    [70]
    A. Pukhov and J. Meyer-ter Vehn, “Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets,” Phys. Rev. Lett. 79, 2686 (1997).10.1103/physrevlett.79.2686
    [71]
    P. McKenna, F. Lindau, O. Lundh, D. Neely, A. Persson, and C.-G. Wahlström, “High-intensity laser-driven proton acceleration: Influence of pulse contrast,” Philos. Trans. R. Soc., A 364, 711–723 (2006).10.1098/rsta.2005.1733
    [72]
    S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).10.1103/physrevlett.110.175001
    [73]
    P. Ye, L. Gulyás Oldal, T. Csizmadia, Z. Filus, T. Grósz, P. Jójárt, I. Seres, Z. Bengery, B. Gilicze, S. Kahaly, K. Varjú, and B. Major, “High-flux 100 kHz attosecond pulse source driven by a high-average power annular laser beam,” Ultrafast Sci. 2022, 9823783.10.34133/2022/9823783
    [74]
    S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, F. Réau, D. Garzella, P. D’Oliveira, P. Martin, and F. Quéré, “Optically controlled solid-density transient plasma gratings,” Phys. Rev. Lett. 112, 145008 (2014).10.1103/physrevlett.112.145008
    [75]
    B. J. Galow, Y. I. Salamin, T. V. Liseykina, Z. Harman, and C. H. Keitel, “Dense monoenergetic proton beams from chirped laser-plasma interaction,” Phys. Rev. Lett. 107, 185002 (2011).10.1103/physrevlett.107.185002
    [76]
    H. Vosoughian, Z. Riazi, H. Afarideh, and E. Yazdani, “Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism,” Phys. Plasmas 22, 073110 (2015).10.1063/1.4926817
    [77]
    F. Mackenroth, A. Gonoskov, and M. Marklund, “Chirped-standing-wave acceleration of ions with intense lasers,” Phys. Rev. Lett. 117, 104801 (2016).10.1103/physrevlett.117.104801
    [78]
    S. Choudhary and A. R. Holkundkar, “Chirp assisted ion acceleration via relativistic self-induced transparency,” Phys. Plasmas 25, 103111 (2018).10.1063/1.5039918
    [79]
    T. V. Liseikina and A. Macchi, “Features of ion acceleration by circularly polarized laser pulses,” Appl. Phys. Lett. 91, 171502 (2007).10.1063/1.2803318
    [80]
    A. Macchi and C. Benedetti, “Ion acceleration by radiation pressure in thin and thick targets,” Nucl. Instrum. Methods Phys. Res., Sect. A 620, 41–45 (2010).10.1016/j.nima.2010.01.057
    [81]
    O. Culfa, “Laser-driven particle acceleration at near critical density plasmas,” Eur. Phys. J. D 75, 194 (2021).10.1140/epjd/s10053-021-00208-2
    [82]
    M. Almassarani, S. Meng, B. Beleites, F. Ronneberger, G. G. Paulus, and A. Gopal, “Parametric study of proton acceleration from laser-thin foil interaction,” Plasma 4, 670–680 (2021).10.3390/plasma4040034
    [83]
    B. Gonzalez-Izquierdo, M. King, R. J. Gray, R. Wilson, R. J. Dance, H. Powell, D. A. Maclellan, J. McCreadie, N. M. H. Butler, S. Hawkes, J. S. Green, C. D. Murphy, L. C. Stockhausen, D. C. Carroll, N. Booth, G. G. Scott, M. Borghesi, D. Neely, and P. McKenna, “Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency,” Nat. Commun. 7, 12891 (2016).10.1038/ncomms12891
    [84]
    H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin, and F. Quéré, “Optical properties of relativistic plasma mirrors,” Nat. Commun. 5, 3403 (2014).10.1038/ncomms4403
    [85]
    J.-L. Vay, A. Huebl, A. Almgren, L. D. Amorim, J. Bell, L. Fedeli, L. Ge, K. Gott, D. P. Grote, M. Hogan, R. Jambunathan, R. Lehe, A. Myers, C. Ng, M. Rowan, O. Shapoval, M. Thévenet, H. Vincenti, E. Yang, N. Zaïm, W. Zhang, Y. Zhao, and E. Zoni, “Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs,” Phys. Plasmas 28, 023105 (2021).10.1063/5.0028512
    [86]
    T. Lamprou, R. Lopez-Martens, S. Haessler, I. Liontos, S. Kahaly, J. Rivera-Dean, P. Stammer, E. Pisanty, M. F. Ciappina, M. Lewenstein, and P. Tzallas, “Quantum-optical spectrometry in relativistic laser–plasma interactions using the high-harmonic generation process: A proposal,” Photonics 8, 192 (2021).10.3390/photonics8060192
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (34) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return