Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Wang Qiang, Li Zhichao, Liu Zhanjun, Gong Tao, Zhang Wenshuai, Xu Tao, Li Bin, Li Ping, Li Xin, Zheng Chunyang, Cao Lihua, Liu Xincheng, Pan Kaiqiang, Zhao Hang, Liu Yonggang, Deng Bo, Hou Lifei, Li Yingjie, Liu Xiangming, Li Yulong, Peng Xiaoshi, Guan Zanyang, Wang Qiangqiang, Che Xingsen, Li Sanwei, Yin Qiang, Zhang Wei, Xia Liqiong, Wang Peng, Jiang Xiaohua, Guo Liang, Li Qi, He Minqing, Hao Liang, Cai Hongbo, Zheng Wudi, Zou Shiyang, Yang Dong, Wang Feng, Yang Jiamin, Zhang Baohan, Ding Yongkun, He Xiantu. The effects of incident light wavelength difference on the collective stimulated Brillouin scattering in plasmas[J]. Matter and Radiation at Extremes, 2023, 8(5): 055602. doi: 10.1063/5.0151372
Citation: Wang Qiang, Li Zhichao, Liu Zhanjun, Gong Tao, Zhang Wenshuai, Xu Tao, Li Bin, Li Ping, Li Xin, Zheng Chunyang, Cao Lihua, Liu Xincheng, Pan Kaiqiang, Zhao Hang, Liu Yonggang, Deng Bo, Hou Lifei, Li Yingjie, Liu Xiangming, Li Yulong, Peng Xiaoshi, Guan Zanyang, Wang Qiangqiang, Che Xingsen, Li Sanwei, Yin Qiang, Zhang Wei, Xia Liqiong, Wang Peng, Jiang Xiaohua, Guo Liang, Li Qi, He Minqing, Hao Liang, Cai Hongbo, Zheng Wudi, Zou Shiyang, Yang Dong, Wang Feng, Yang Jiamin, Zhang Baohan, Ding Yongkun, He Xiantu. The effects of incident light wavelength difference on the collective stimulated Brillouin scattering in plasmas[J]. Matter and Radiation at Extremes, 2023, 8(5): 055602. doi: 10.1063/5.0151372

The effects of incident light wavelength difference on the collective stimulated Brillouin scattering in plasmas

doi: 10.1063/5.0151372
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: liuzj@iapcm.ac.cn
  • Received Date: 2023-03-21
  • Accepted Date: 2023-07-09
  • Available Online: 2023-09-01
  • Publish Date: 2023-09-01
  • The first laser–plasma interaction experiment using lasers of eight beams grouped into one octad has been conducted on the Shenguang Octopus facility. Although each beam intensity is below its individual threshold for stimulated Brillouin backscattering (SBS), collective behaviors are excited to enhance the octad SBS. In particular, when two-color/cone lasers with wavelength separation 0.3 nm are used, the backward SBS reflectivities show novel behavior in which beams of longer wavelength achieve higher SBS gain. This property of SBS can be attributed to the rotation of the wave vectors of common ion acoustic waves due to the competition of detunings between geometrical angle and wavelength separation. This mechanism is confirmed using massively parallel supercomputer simulations with the three-dimensional laser–plasma interaction code LAP3D.
  • loading
  • [1]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [2]
    X. T. He, J. W. Li, Z. F. Fan, L. F. Wang, J. Liu, K. Lan, J. F. Wu, and W. H. Ye, “A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion,” Phys. Plasmas 23, 082706 (2016).10.1063/1.4960973
    [3]
    K. Lan, J. Liu, Z. Li, X. Xie, W. Huo, Y. Chen, G. Ren, C. Zheng, D. Yang, S. Li, Z. Yang, L. Guo, S. Li, M. Zhang, X. Han, C. Zhai, L. Hou, Y. Li, K. Deng, Z. Yuan, X. Zhan, F. Wang, G. Yuan, H. Zhang, B. Jiang, L. Huang, W. Zhang, K. Du, R. Zhao, P. Li, W. Wang, J. Su, X. Deng, D. Hu, W. Zhou, H. Jia, Y. Ding, W. Zheng, and X. He, “Progress in octahedral spherical hohlraum study,” Matter Radiat. Extremes 1, 8 (2016).10.1016/j.mre.2016.01.003
    [4]
    W. L. Kruer, S. C. Wilks, B. B. Afeyan, and R. K. Kirkwood, “Energy transfer between crossing laser beams,” Phys. Plasmas 3, 382 (1996).10.1063/1.871863
    [5]
    P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas, D. A. Callahan, S. W. Haan, J. D. Salmonson, S. Dixit, D. E. Hinkel, M. J. Edwards, B. J. MacGowan, J. D. Lindl, S. H. Glenzer, and L. J. Suter, “Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer,” Phys. Rev. Lett. 102, 025004 (2009).10.1103/physrevlett.102.025004
    [6]
    P. Michel, S. H. Glenzer, L. Divol, D. K. Bradley, D. Callahan, S. Dixit, S. Glenn, D. Hinkel, R. K. Kirkwood, J. L. Kline, W. L. Kruer, G. A. Kyrala, S. Le Pape, N. B. Meezan, R. Town, K. Widmann, E. A. Williams, B. J. MacGowan, J. Lindl, and L. J. Suter, “Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility,” Phys. Plasmas 17, 056305 (2010).10.1063/1.3325733
    [7]
    J. F. Myatt, J. Zhang, R. W. Short, A. V. Maximov, W. Seka, D. H. Froula, D. H. Edgell, D. T. Michel, I. V. Igumenshchev, D. E. Hinkel, P. Michel, and J. D. Moody, “Multiple-beam laser–plasma interactions in inertial confinement fusion,” Phys. Plasmas 21, 055501 (2014).10.1063/1.4878623
    [8]
    D. Turnbull, P. Michel, J. E. Ralph, L. Divol, J. S. Ross, L. F. Berzak Hopkins, A. L. Kritcher, D. E. Hinkel, and J. D. Moody, “Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments,” Phys. Rev. Lett. 114, 125001 (2015).10.1103/physrevlett.114.125001
    [9]
    R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, W. H. Dunlop, J. D. Moody, D. J. Strozzi, P. A. Michel, L. Divol, O. L. Landen, B. J. MacGowan, B. M. Van Wonterghem, K. B. Fournier, and B. E. Blue, “Plasma-based beam combiner for very high fluence and energy,” Nat. Phys. 14, 80 (2018).10.1038/nphys4271
    [10]
    P. Michel, L. Divol, D. Turnbull, and J. D. Moody, “Dynamic control of the polarization of intense laser beams via optical wave mixing in plasmas,” Phys. Rev. Lett. 113, 205001 (2014).10.1103/physrevlett.113.205001
    [11]
    W. Seka, H. A. Baldis, J. Fuchs, S. P. Regan, D. D. Meyerhofer, C. Stoeckl, B. Yaakobi, R. S. Craxton, and R. W. Short, “Multibeam stimulated Brillouin scattering from hot, solid-target plasmas,” Phys. Rev. Lett. 89, 175002 (2002).10.1103/physrevlett.89.175002
    [12]
    S. Depierreux, C. Neuville, C. Baccou, V. Tassin, M. Casanova, P.-E. Masson-Laborde, N. Borisenko, A. Orekhov, A. Colaitis, A. Debayle, G. Duchateau, A. Heron, S. Huller, P. Loiseau, P. Nicolaï, D. Pesme, C. Riconda, G. Tran, R. Bahr, J. Katz, C. Stoeckl, W. Seka, V. Tikhonchuk, and C. Labaune, “Experimental investigation of the collective Raman scattering of multiple laser beams in inhomogeneous plasmas,” Phys. Rev. Lett. 117, 235002 (2016).10.1103/physrevlett.117.235002
    [13]
    C. Neuville, V. Tassin, D. Pesme, M.-C. Monteil, P.-E. Masson-Laborde, C. Baccou, P. Fremerye, F. Philippe, P. Seytor, D. Teychenné, W. Seka, J. Katz, R. Bahr, and S. Depierreux, “Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves,” Phys. Rev. Lett. 116, 235002 (2016).10.1103/physrevlett.116.235002
    [14]
    S. Depierreux, C. Neuville, V. Tassin, M.-C. Monteil, P.-E. Masson-Laborde, C. Baccou, P. Fremerye, F. Philippe, P. Seytor, D. Teychenné, J. Katz, R. Bahr, M. Casanova, N. Borisenko, L. Borisenko, A. Orekhov, A. Colaitis, A. Debayle, G. Duchateau, A. Heron, S. Huller, P. Loiseau, P. Nicolai, C. Riconda, G. Tran, C. Stoeckl, W. Seka, V. Tikhonchuk, D. Pesme, and C. Labaune, “Experimental investigation of the collective stimulated Brillouin and Raman scattering of multiple laser beams in inertial confinement fusion experiments,” Plasma Phys. Controlled Fusion 62, 014024 (2020).10.1088/1361-6587/ab5acd
    [15]
    P. Michel, L. Divol, E. L. Dewald, J. L. Milovich, M. Hohenberger, O. S. Jones, L. B. Hopkins, R. L. Berger, W. L. Kruer, and J. D. Moody, “Multibeam stimulated Raman scattering in inertial confinement fusion conditions,” Phys. Rev. Lett. 115, 055003 (2015).10.1103/physrevlett.115.055003
    [16]
    D. F. DuBois, B. Bezzerides, and H. A. Rose, “Collective parametric instabilities of many overlapping laser beams with finite bandwidth,” Phys. Fluids B 4, 241 (1992).10.1063/1.860439
    [17]
    J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17, 1608 (1974).10.1063/1.1694940
    [18]
    J. J. Thomson, “Finite-bandwidth effects on the parametric instability in an inhomogeneous plasma,” Nucl. Fusion 15, 237 (1975).10.1088/0029-5515/15/2/008
    [19]
    S. P. Obenschain, N. C. Luhmann, Jr., and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36, 1309 (1976).10.1103/physrevlett.36.1309
    [20]
    V. J. Harper-Slaboszewicz, K. Mizuno, T. Idehara, and J. S. De Groot, “Finite bandwidth drive effect on the parametric decay instability near the lower hybrid frequency,” Phys. Fluids B 2, 2525 (1990).10.1063/1.859374
    [21]
    P. N. Guzdar, C. S. Liu, and R. H. Lehmberg, “The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas,” Phys. Fluids B 3, 2882 (1991).10.1063/1.859921
    [22]
    R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula, and J. P. Palastro, “Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers,” Phys. Plasmas 28, 032103 (2021).10.1063/5.0037869
    [23]
    Z. Wanguo, Z. Xiaomin, W. Xiaofeng, J. Feng, S. Zhan, Z. Kuixin, Y. Xiaodong, J. Xiaodong, S. Jingqin, Z. Hai, L. Mingzhong, W. Jianjun, H. Dongxia, H. Shaobo, X. Yong, P. Zhitao, F. Bin, G. Liangfu, L. Xiaoqun, Z. Qihua, Y. Haiwu, Y. Yong, F. Dianyuan, and Z. Weiyan, “Status of the SG-III solid-state laser facility,” J. Phys.: Conf. Ser. 112, 032009 (2008).10.1088/1742-6596/112/3/032009
    [24]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, R. Zhang, F. Wang, H. Jia, and X. Deng, “Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility,” Matter Radiat. Extremes 2, 243 (2017).10.1016/j.mre.2017.07.004
    [25]
    P. Song, C. Zhai, S. Li, Y. Heng, J. Qi, X. Hang, R. Yang, J. Cheng, Q. Zeng, X. Hu, S. Wang, Y. Shi, W. Zheng, P. Gu, S. Zou, X. Li, Y. Zhao, H. Zhang, A. Zhang, H. An, J. Li, W. Pei, and S. Zhu, “LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion,” High Power Laser Part. Beams 27, 032007 (2015).10.11884/HPLPB201527.032007
    [26]
    K. B. Wharton, R. K. Kirkwood, S. H. Glenzer, K. G. Estabrook, B. B. Afeyan, B. I. Cohen, J. D. Moody, and C. Joshi, “Observation of energy transfer between identical-frequency laser beams in a flowing plasma,” Phys. Rev. Lett. 81, 2248 (1998).10.1103/physrevlett.81.2248
    [27]
    T. Chapman, P. Michel, J.-M. G. Di Nicola, R. L. Berger, P. K. Whitman, J. D. Moody, K. R. Manes, M. L. Spaeth, M. A. Belyaev, C. A. Thomas, and B. J. MacGowan, “Investigation and modeling of optics damage in high-power laser systems caused by light backscattered in plasma at the target,” J. Appl. Phys. 125, 033101 (2019).10.1063/1.5070066
    [28]
    Z. J. Liu, Q. Wang, W. S. Zhang, B. Li, P. Li, L. H. Cao, W. G. Zheng, X. Li, and J. W. Li, “Suppression of stimulated Brillouin scattering by multicolor alternating-polarization bundle light in inertial confinement fusion,” Phys. Plasmas 30, 032703 (2023).10.1063/5.0137403
    [29]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (45) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return