Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Zhang Huasen, Kang Dongguo, Wu Changshu, Hao Liang, Shen Hao, Zou Shiyang, Zhu Shaoping, Ding Yongkun. Semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion[J]. Matter and Radiation at Extremes, 2024, 9(1): 015601. doi: 10.1063/5.0150343
Citation: Zhang Huasen, Kang Dongguo, Wu Changshu, Hao Liang, Shen Hao, Zou Shiyang, Zhu Shaoping, Ding Yongkun. Semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion[J]. Matter and Radiation at Extremes, 2024, 9(1): 015601. doi: 10.1063/5.0150343

Semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion

doi: 10.1063/5.0150343
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: kang_dongguo@iapcm.ac.cn
  • Received Date: 2023-03-14
  • Accepted Date: 2023-09-22
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • Extrapolation of implosion performance between different laser energy scales is investigated for indirect drive through a semi-hydro-equivalent design. Since radiation transport is non-hydro-equivalent, the peak radiation temperature of the hohlraum and the ablation velocity of the capsule ablator are not scale-invariant when the sizes of the hohlraum and the capsule are scale-varied. A semi-hydro-equivalent design method that keeps the implosion velocity Vi, adiabat αF, and PL/Rhc2 (where PL is the laser power and Rhc is the hohlraum and capsule scale length) scale-invariant, is proposed to create hydrodynamically similar implosions. The semi-hydro-equivalent design and the scaled implosion performance are investigated for the 100 kJ Laser Facility (100 kJ-scale) and the National Ignition Facility (NIF-scale) with about 2 MJ laser energy. It is found that the one-dimensional implosion performance is approximately hydro-equivalent when Vi and αF are kept the same. Owing to the non-hydro-equivalent radiation transport, the yield-over-clean without α-particle heating (YOCnoα) is slightly lower at 100 kJ-scale than at NIF-scale for the same scaled radiation asymmetry or the same initial perturbation of the hydrodynamic instability. The overall scaled two-dimensional implosion performance is slightly lower at 100 kJ-scale. The general Lawson criterion factor scales as χnoα2DS1.06±0.04 (where S is the scale-variation factor) for the semi-hydro-equivalent implosion design with a moderate YOCnoα. Our study indicates that χnoα ≈ 0.379 is the minimum requirement for the 100 kJ-scale implosion to demonstrate the ability to achieve marginal ignition at NIF-scale.
  • loading
  • [1]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Clarendon, Oxford, 2004).
    [2]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
    [3]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [4]
    J. D. Lawson, “Some criteria for a power producing thermonuclear reactor,” Proc. Phys. Soc., London, Sect. B 70, 6 (1957).10.1088/0370-1301/70/1/303
    [5]
    C. D. Zhou and R. Betti, “A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion,” Phys. Plasmas 15, 102707 (2008).10.1063/1.2998604
    [6]
    P. Y. Chang, R. Betti, B. K. Spears, K. S. Anderson, J. Edwards et al., “Generalized measurable ignition criterion for inertial confinement fusion,” Phys. Rev. Lett. 104, 135002 (2010).10.1103/physrevlett.104.135002
    [7]
    R. Betti, P. Y. Chang, B. K. Spears, K. S. Anderson, J. Edwards et al., “Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement,” Phys. Plasmas 17, 058102 (2010).10.1063/1.3380857
    [8]
    B. K. Spears, S. Glenzer, M. J. Edwards, S. Brandon, D. Clark et al., “Performance metrics for inertial confinement fusion implosions: Aspects of the technical framework for measuring progress in the National Ignition Campaign,” Phys. Plasmas 19, 056316 (2012).10.1063/1.3696743
    [9]
    J. D. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [10]
    A. R. Christopherson, R. Betti, J. Howard, K. M. Woo, A. Bose et al., “Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime,” Phys. Plasmas 25, 072704 (2018).10.1063/1.5030337
    [11]
    J. D. Lindl, S. W. Haan, O. L. Landen, A. R. Christopherson, and R. Betti, “Progress toward a self-consistent set of 1D ignition capsule metrics in ICF,” Phys. Plasmas 25, 122704 (2018).10.1063/1.5049595
    [12]
    S. Le Pape, L. F. Berzak Hopkins, L. Divol, A. Pak, E. Dewald , “Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility,” Phys. Rev. Lett 120, 245003 (2018).10.1103/physrevlett.120.245003
    [13]
    P. K. Patel, P. T. Springer, C. R. Weber, L. C. Jarrott, O. A. Hurricane et al., “Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility,” Phys. Plasmas 27, 050901 (2020).10.1063/5.0003298
    [14]
    A. B. Zylstra, A. L. Kritcher, O. A. Hurricane, D. A. Callahan, K. Baker et al., “Record energetics for an inertial fusion implosion at NIF,” Phys. Rev. Lett. 126, 025001 (2021).10.1103/physrevlett.126.025001
    [15]
    A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph et al., “Burning plasma achieved in inertial fusion,” Nature 601, 542 (2022).10.1038/s41586-021-04281-w
    [16]
    A. L. Kritcher, C. V. Young, H. F. Robey, C. R. Weber, A. B. Zylstra et al., “Design of inertial fusion implosions reaching the burning plasma regime,” Nat. Phys. 18, 251 (2022).10.1038/s41567-021-01485-9
    [17]
    H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis , “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett 129, 075001 (2022).10.1103/physrevlett.129.075001
    [18]
    A. L. Kritcher, A. B. Zylstra, D. A. Callahan, O. A. Hurricane, C. R. Weber et al., “Design of an inertial fusion experiment exceeding the Lawson criterion for ignition,” Phys. Rev. E 106, 025201 (2022).10.1103/physreve.106.025201
    [19]
    A. B. Zylstra, A. L. Kritcher, O. A. Hurricane, D. A. Callahan, J. E. Ralph et al., “Experimental achievement and signatures of ignition at the National Ignition Facility,” Phys. Rev. E 106, 025202 (2022).10.1103/physreve.106.025202
    [20]
    [21]
    R. Nora, R. Betti, K. S. Anderson, A. Shvydky, A. Bose et al., “Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility,” Phys. Plasmas 21, 056316 (2014).10.1063/1.4875331
    [22]
    A. Bose, K. M. Woo, R. Betti, E. M. Campbell, D. Mangino et al., “Core conditions for alpha heating attained in direct-drive inertial confinement fusion,” Phys. Rev. E 94, 011201(R) (2016).10.1103/physreve.94.011201
    [23]
    A. Bose, R. Betti, D. Mangino, K. M. Woo, D. Patel et al., “Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA,” Phys. Plasmas 25, 062701 (2018).10.1063/1.5026780
    [24]
    X. T. He and W. Y. Zhang, “Inertial fusion research in China,” Eur. Phys. J. D 44, 227 (2007).10.1140/epjd/e2007-00005-1
    [25]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu et al., “Laser performance of the SG-III laser facility,” High Power Laser Sci. Eng. 4, e21 (2016).10.1017/hpl.2016.20
    [26]
    D. S. Clark, C. R. Weber, J. L. Milovich, A. E. Pak, D. T. Casey, B. A. Hammel, D. D. Ho, O. S. Jones, J. M. Koning, A. L. Kritcher et al., “Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions,” Phys. Plasmas 26, 050601 (2019).10.1063/1.5091449
    [27]
    O. A. Hurricane, P. T. Springer, P. K. Patel, D. A. Callahan, K. Baker et al., “Approaching a burning plasma on the NIF,” Phys. Plasmas 26, 052704 (2019).10.1063/1.5087256
    [28]
    A. B. Zylstra, D. T. Casey, A. Kritcher, L. Pickworth, B. Bachmann et al., “Hot-spot mix in large-scale HDC implosions at NIF,” Phys. Plasmas 27, 092709 (2020).10.1063/5.0003779
    [29]
    P. Song, C. L. Zhai, S. G. Li, H. Yong, J. Qi, X. D. Hang, R. Yang, J. Cheng, Q. H. Zeng, X. Y. Hu, S. Wang, Y. Shi, W. D. Zheng, P. J. Gu, S. Y. Zou, X. Li, Y. Q. Zhao, H. S. Zhang, A. Q. Zhang, H. B. An, J. H. Li, W. B. Pei, and S. P. Zhu, “LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion,” High Power Laser Part. Beams 27, 032007 (2015).10.11884/HPLPB201527.032007
    [30]
    Z. Fan, X. T. He, J. Liu, G. Ren, B. Liu, J. Wu, L. F. Wang, and W. Ye, “A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion,” Phys. Plasmas 21, 100705 (2014).10.1063/1.4898682
    [31]
    S. A. MacLaren, L. P. Masse, C. E. Czajka, S. F. Khan, G. A. Kyrala et al., “A near one-dimensional indirectly driven implosion at convergence ratio 30,” Phys. Plasmas 25, 056311 (2018).10.1063/1.5017976
    [32]
    D. A. Callahan, O. A. Hurricane, J. E. Ralph, C. A. Thomas, K. L. Baker et al., “Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser,” Phys. Plasmas 25, 056305 (2018).10.1063/1.5020057
    [33]
    Lord Rayleigh, “Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density,” Proc. London Math. Soc. s1-14, 170 (1882).10.1112/plms/s1-14.1.170
    [34]
    G. Taylor, “The instability of liquid surface when accelerated in a direction perpendicular to their planes,” Proc. R. Soc. London, Ser. A 201, 192 (1950).10.1098/rspa.1950.0052
    [35]
    R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluid,” Commun. Pure Appl. Math. 13, 297 (1960).10.1002/cpa.3160130207
    [36]
    E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” Fluid Dyn 4, 101 (1969).10.1007/bf01015969
    [37]
    H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28, 3676 (1985).10.1063/1.865099
    [38]
    H. Zhang, R. Betti, V. Gopalaswamy, R. Yan, and H. Aluie, “Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers,” Phys. Rev. E 97, 011203(R) (2018).10.1103/physreve.97.011203
    [39]
    H. Zhang, R. Betti, R. Yan, and H. Aluie, “Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion,” Phys. Plasmas 27, 122701 (2020).10.1063/5.0023541
    [40]
    H. Zhang, R. Betti, R. Yan, D. Zhao, D. Shvarts, and H. Aluie, “Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions,” Phys. Rev. Lett. 121, 185002 (2018).10.1103/physrevlett.121.185002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (60) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return