Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Shelkovenko T. A., Tilikin I. N., Oginov A. V., Mingaleev A. R., Romanova V. M., Pikuz S. A.. Methods of controlled formation of instabilities during the electrical explosion of thin foils[J]. Matter and Radiation at Extremes, 2023, 8(5): 055601. doi: 10.1063/5.0146820
Citation: Shelkovenko T. A., Tilikin I. N., Oginov A. V., Mingaleev A. R., Romanova V. M., Pikuz S. A.. Methods of controlled formation of instabilities during the electrical explosion of thin foils[J]. Matter and Radiation at Extremes, 2023, 8(5): 055601. doi: 10.1063/5.0146820

Methods of controlled formation of instabilities during the electrical explosion of thin foils

doi: 10.1063/5.0146820
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: ivan.tilikin@gmail.com
  • Received Date: 2023-02-16
  • Accepted Date: 2023-06-18
  • Available Online: 2023-09-01
  • Publish Date: 2023-09-01
  • The results of a study of the electrical explosion of aluminum foils with an artificial periodic surface structure created by laser engraving are presented. Experiments were carried out on pulsed high-current generators BIN (270 kA, 300 kV, 100 ns) and KING (200 kA, 40 kV, 200 ns) with Al foil of thicknesses 16 and 4 μm, respectively. Images of the exploded foils were recorded by point projection radiography in the radiation from hybrid X-pinches. It is found that the application of an artificial periodic structure to the foil leads to a much more uniform and well-defined periodic structure of the exploded foil. Images recorded in the UV range using a microchannel-plate-intensified detector show that the radiation from a surface-modified foil is more uniform along the entire length and width of the foil than that from a foil without modification.
  • loading
  • [1]
    L. Smilowitz, D. Remelius, N. Suvorova, P. Bowlan, D. Oschwald, and B. F. Henson, “Finding the ‘lost-time’ in detonator function,” Appl. Phys. Lett. 114, 104102 (2019).10.1063/1.5088606
    [2]
    P. J. Rae, T. A. Feagin, and E. M. Heatwole, “Investigating the minimum post-burst energy required to function an exploding bridgewire detonator,” J. Appl. Phys. 128, 033301 (2020).10.1063/5.0006804
    [3]
    V. S. Sedoi, G. A. Mesyats, V. I. Oreshkin, V. V. Valevich, and L. I. Chemezova, “The current density and the specific energy input in fast electrical explosion,” IEEE Trans. Plasma Sci. 27, 845 (1999).10.1109/27.782248
    [4]
    V. A. Burtsev, N. V. Kalinin, and A. V. Luchinskii, Electric Explosion of Conductors and its Application in Electrophysical Plants (Energoatomizdat, Moscow, 1990) (in Russian).
    [5]
    T. Mihara, N. Matsuo, M. Otsuka, and S. Itoh, “Study on metal foil explosion using high current,” Proc. SPIE 7522, 75222A (2010).10.1117/12.851562
    [6]
    V. V. Aleksandrov, M. M. Basko, A. V. Branitskii, E. V. Grabovsky, A. N. Gritsuk, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, and I. N. Frolov, “Investigation of X-ray self-emission of plasma of targets heated by high-power pulses of soft X-ray radiation,” Plasma Phys. Rep. 47, 669 (2021).10.1134/s1063780x21070035
    [7]
    S. A. Pikuz, T. A. Shelkovenko, I. N. Tilikin, E. A. Bolkhovitinov, A. A. Kologrivov, A. R. Mingaleev, V. M. Romanova, and A. A. Rupasov, “Study of SXR/EUV radiation of exploded foils and wires with spectral, spatial and temporal resolution simultaneously on KING electric discharge facility,” Plasma Sources Sci. Technol. 30, 115012 (2021).10.1088/1361-6595/ac3211
    [8]
    V. L. Kantsyrev, A. S. Chuvatin, A. S. Safronova, L. I. Rudakov, A. A. Esaulov, A. L. Velikovich, I. Shrestha, A. Astanovitsky, G. C. Osborne, V. V. Shlyaptseva, M. E. Weller, S. Keim, A. Stafford, and M. Cooper, “Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research,” Phys. Plasmas 21, 031204 (2014).10.1063/1.4865367
    [9]
    L. Atoyan, D. A. Hammer, B. R. Kusse, T. Byvank, A. D. Cahill, J. B. Greenly, S. A. Pikuz, and T. A. Shelkovenko, “Helical plasma striations in liners in the presence of an external axial magnetic field,” Phys. Plasmas 23, 022708 (2016).10.1063/1.4942787
    [10]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, V. M. Romanova, S. N. Mishin, L. Atoyan, and D. A. Hammer, “A study of thin foil explosion,” IEEE Trans. Plasma Sci. 46, 3741 (2018).10.1109/tps.2018.2852063
    [11]
    T. A. Shelkovenko, I. N. Tilikin, A. R. Mingaleev, and S. A. Pikuz, “Features of explosion of thin aluminum foils on an 8 kA, 350 ns pulse generator,” Phys. Plasmas 27, 043508 (2020).10.1063/1.5133126
    [12]
    T. A. Shelkovenko, I. N. Tilikin, A. V. Oginov, K. S. Pervakov, A. R. Mingaleev, V. M. Romanova, and S. A. Pikuz, “Investigation of the nanosecond explosion of thin foils, with artificially applied surface structure,” Plasma Phys. Rep. 48, 1226 (2022).10.1134/s1063780x22600815
    [13]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, A. R. Mingaleev, V. M. Romanova, and D. A. Hammer, “Study of the structure of exploding flat foils at superhigh current density,” J. Appl. Phys. 128, 205902 (2020).10.1063/5.0019330
    [14]
    T. J. Awe, K. J. Peterson, E. P. Yu, R. D. McBride, D. B. Sinars, M. R. Gomez, C. A. Jennings, M. R. Martin, S. E. Rosental, D. G. Schroen, A. B. Sefkow, S. A. Slutz, K. Tomlinson, and R. A. Vesey, “Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners,” Phys. Rev. Lett. 116, 065001 (2016).10.1103/physrevlett.116.065001
    [15]
    K. J. Peterson, D. B. Sinars, E. P. Yu, M. C. Herrmann, M. E. Cuneo, S. A. Slutz, I. C. Smith, B. W. Atherton, M. D. Knudson, and C. Nakhleh, “Electrothermal instability growth in magnetically driven pulsed power liners,” Phys. Plasmas 19, 092701 (2012).10.1063/1.4751868
    [16]
    R. D. McBride, S. A. Slutz, R. A. Vesey et al., “Exploring magnetized liner inertial fusion with a semi-analytic model,” Phys. Plasmas 23, 012705 (2016).10.1063/1.4939479
    [17]
    T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, and D. A. Hammer, “Point-projection x-ray radiography using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667 (2001).10.1063/1.1323252
    [18]
    T. A. Shelkovenko, S. A. Pikuz, A. D. Cahill, P. F. Knapp, D. A. Hammer, D. B. Sinars, I. N. Tilikin, and S. N. Mishin, “Hybrid X-pinch with conical electrodes,” Phys. Plasmas 17, 112707 (2010).10.1063/1.3504226
    [19]
    T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer, “A review of projection radiography of plasma and biological objects in X-pinch radiation,” Plasma Phys. Rep. 42, 226 (2016).10.1134/s1063780x16030065
    [20]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, M. D. Mitchell, S. N. Bland, and D. A. Hammer, “Evolution of X-pinch loads for pulsed power generators with current from 50 to 5000 kA,” Matter Radiat. Extremes 3, 267 (2018).10.1016/j.mre.2018.09.001
    [21]
    T. A. Shelkovenko, I. N. Tilikin, E. A. Bolkhovitinov, A. A. Kologrivov, A. R. Mingaleev, V. M. Romanova, V. B. Zorin, A. A. Rupasov, and S. A. Pikuz, “A study of the ultraviolet radiation of hybrid X-pinches,” Plasma Phys. Rep. 46, 10 (2020).10.1134/s1063780x2001016x
    [22]
    T. A. Shelkovenko, I. N. Tilikin, S. A. Pikuz, A. R. Mingaleev, V. M. Romanova, L. Atoyan, and D. A. Hammer, “Explosion dynamics of thin flat foils at high current density,” Matter Radiat. Extremes 7, 055901 (2022).10.1063/5.0098333
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (35) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return