Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Wang Zhao, Cheng Rui, Wang Guodong, Jin Xuejian, Tang Yong, Chen Yanhong, Zhou Zexian, Shi Lulin, Wang Yuyu, Lei Yu, Wu Xiaoxia, Yang Jie. Observation of plasma dynamics in a theta pinch by a novel method[J]. Matter and Radiation at Extremes, 2023, 8(4): 045901. doi: 10.1063/5.0144921
Citation: Wang Zhao, Cheng Rui, Wang Guodong, Jin Xuejian, Tang Yong, Chen Yanhong, Zhou Zexian, Shi Lulin, Wang Yuyu, Lei Yu, Wu Xiaoxia, Yang Jie. Observation of plasma dynamics in a theta pinch by a novel method[J]. Matter and Radiation at Extremes, 2023, 8(4): 045901. doi: 10.1063/5.0144921

Observation of plasma dynamics in a theta pinch by a novel method

doi: 10.1063/5.0144921
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: chengrui@impcas.ac.cn
  • Received Date: 2023-02-01
  • Accepted Date: 2023-04-27
  • Available Online: 2023-07-01
  • Publish Date: 2023-07-01
  • A novel experimental method is proposed for observing plasma dynamics subjected to magnetic fields based on a newly developed cylindrical theta-pinch device. By measuring simultaneously the temporal profiles of multiple parameters including the drive current, luminosity, plasma density, and plasma temperature, it provides a basis for observing the plasma dynamics of the theta pinch, such as shock transport and magnetohydrodynamic instability. We show that the plasma evolution can be distinguished as three phases. First, in the radial implosion phase, the trajectories of the current sheath and shock wave are ascertained by combining experimental data with a snowplow model (Lee model) in a self-consistent way. Second, in the axial flow phase, we demonstrate that m = 0 (sausage) instability associated with the plasma axial flow suppresses the plasma end-loss. Third, in the newly observed anomalous heating phase, the lower-hybrid-drift instability may develop near the current sheath, which induces anomalous resistivity and enhanced plasma heating. The present experimental data and novel method offer better understanding of plasma dynamics in the presence of magnetic fields, thereby providing important support for relevant research in magneto-inertial fusion.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    Zhao Wang: Conceptualization (equal); Data curation (equal); Investigation (lead); Methodology (lead); Validation (equal); Writing – original draft (lead); Writing – review & editing (equal). Rui Cheng: Funding acquisition (equal); Investigation (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal). Guodong Wang: Data curation (equal); Investigation (equal); Writing – review & editing (equal). Xuejian Jin: Data curation (equal); Investigation (equal); Writing – review & editing (equal). Yong Tang: Data curation (equal); Investigation (equal); Writing – review & editing (equal). Yanhong Chen: Investigation (equal); Writing – review & editing (equal). Zexian Zhou: Investigation (equal); Writing – review & editing (equal). Lulin Shi: Investigation (equal); Writing – review & editing (equal). Yuyu Wang: Investigation (equal); Writing – review & editing (equal). Yu Lei: Investigation (equal); Writing – review & editing (equal). Xiaoxia Wu: Investigation (equal); Writing – review & editing (equal). Jie Yang: Funding acquisition (equal); Investigation (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    A. H. Boozer, “Physics of magnetically confined plasmas,” Rev. Mod. Phys. 76, 1071 (2004).10.1103/RevModPhys.76.1071
    [2]
    A. Hasegawa, H. Daido, M. Fujita et al., “Magnetically insulated inertial fusion: A new approach to controlled thermonuclear fusion,” Phys. Rev. Lett. 56, 139 (1986).10.1103/physrevlett.56.139
    [3]
    J. Ongena, R. Koch, R. Wolf, and H. Zohm, “Magnetic-confinement fusion,” Nat. Phys. 12, 398–410 (2016).10.1038/nphys3745
    [4]
    I. R. Lindemuth and R. C. Kirkpatrick, “Parameter space for magnetized fuel targets in inertial confinement fusion,” Nucl. Fusion 23, 263–284 (1983).10.1088/0029-5515/23/3/001
    [5]
    J. D. Sadler, H. Li, and K. A. Flippo, “Parameter space for magnetization effects in high-energy-density plasmas,” Matter Radiat. Extremes 6, 065902 (2021).10.1063/5.0057087
    [6]
    F. García-Rubio, A. Ruocco, and J. Sanz, “Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field,” Phys. Plasmas 23, 012103 (2016).10.1063/1.4939476
    [7]
    I. R. Lindemuth, “Magnetohydrodynamic behavior of thermonuclear fuel in a preconditioned electron beam imploded target,” Phys. Fluids 24, 746 (1981).10.1063/1.863415
    [8]
    S. Molokov, R. Moreau and K. Moffatt, Magnetohydrodynamics (Springer, The Netherlands, Dordrecht, 2007).
    [9]
    J. D. Moody, B. B. Pollock, H. Sio et al., “Increased ion temperature and neutron yield observed in magnetized indirectly driven D2-filled capsule implosions on the national ignition facility,” Phys. Rev. Lett. 129, 195002 (2022).10.1103/physrevlett.129.195002
    [10]
    S. A. Slutz and R. A. Vesey, “High-gain magnetized inertial fusion,” Phys. Rev. Lett. 108, 025003 (2012).10.1103/PhysRevLett.108.025003
    [11]
    G. A. Wurden, S. C. Hsu, T. P. Intrator et al., “Magneto-inertial fusion,” J. Fusion Energy 35, 69–77 (2015).10.1007/s10894-015-0038-x
    [12]
    L. J. Perkins, D. D. M. Ho, B. G. Logan et al., “The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion,” Phys. Plasmas 24, 062708 (2017).10.1063/1.4985150
    [13]
    M. R. Gomez, S. A. Slutz, A. B. Sefkow et al., “Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion,” Phys. Rev. Lett. 113, 155003 (2014).10.1103/physrevlett.113.155003
    [14]
    C. Arran, C. P. Ridgers, and N. C. Woolsey, “Proton radiography in background magnetic fields,” Matter Radiat. Extremes 6, 046904 (2021).10.1063/5.0054172
    [15]
    R. D. Jones and W. C. Mead, “The physics of burn in magnetized deuterium-tritium plasmas: Spherical geometry,” Nucl. Fusion 26, 127–137 (1986).10.1088/0029-5515/26/2/001
    [16]
    J. D. Sadler, S. Green, S. Li et al., “Faster ablative Kelvin–Helmholtz instability growth in a magnetic field,” Phys. Plasmas 29, 052708 (2022).10.1063/5.0082610
    [17]
    M. E. Cuneo, M. C. Herrmann, D. B. Sinars et al., “Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories,” IEEE Trans. Plasma Sci. 40, 3222–3245 (2012).10.1109/tps.2012.2223488
    [18]
    P. C. Campbell, T. M. Jones, J. M. Woolstrum et al., “Stabilization of liner implosions via a dynamic screw pinch,” Phys. Rev. Lett. 125, 035001 (2020).10.1103/PhysRevLett.125.035001
    [19]
    M. Hohenberger, P. Y. Chang, G. Fiksel et al., “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser,” Phys. Plasmas 19, 056306 (2012).10.1063/1.3696032
    [20]
    W. B. Thompson, Physics of Hot Plasmas (Springer-Verlag, Boston, USA, 1968).
    [21]
    R. C. Davidson and N. A. Krall, “Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems,” Nucl. Fusion 17, 1313 (1977).10.1088/0029-5515/17/6/017
    [22]
    N. L. Bretz and A. W. DeSilva, “Turbulence spectrum observed in a collision-free theta-pinch plasma by CO2 laser scattering,” Phys. Rev. Lett. 32, 138–141 (1974).10.1103/physrevlett.32.138
    [23]
    A. W. DeSilva and J. A. Stamper, “Observation of anomalous electron heating in plasma shock waves,” Phys. Rev. Lett. 19, 1027–1030 (1967).10.1103/physrevlett.19.1027
    [24]
    K. F. McKenna, R. Kristal, and K. S. Thomas, “Measurements of plasma density distribution and current-sheath in the implosion phase of a theta-pinch discharge,” Phys. Rev. Lett. 32, 409–412 (1974).10.1103/physrevlett.32.409
    [25]
    V. Josephson, M. H. Dazey, and R. F. Wuerker, “Instability mechanisms in transverse pinches,” Phys. Rev. Lett. 5, 416 (1961).10.1103/physrevlett.5.416
    [26]
    V. Josephson, M. H. Dazey, and R. F. Wuerker, “A neutron-producing mechanism in transverse pinches,” Phys. Rev. 121, 674 (1961).10.1103/physrev.121.674
    [27]
    M. E. Kayama, R. A. Clemente, R. Y. Honda, and M. S. Dobrowolsky, “Radial plasma dynamic in sequential pinches,” IEEE Trans. Plasma Sci. 37, 2186–2190 (2009).10.1109/tps.2009.2031868
    [28]
    P. Christ, Y. Bonilla Guzmán, C. Cistakov et al., “Time-resolved measurement of the free electron and neutral gas line density in a hydrogen theta-pinch plasma target by two-color interferometry,” J. Phys. D: Appl. Phys. 55, 185204 (2022).10.1088/1361-6463/ac4f90
    [29]
    A. A. Newton, “Area waves in a theta pinch,” Nucl. Fusion 8, 93–97 (1968).10.1088/0029-5515/8/2/003
    [30]
    K. F. McKenna and T. M. York, “End loss from a collision dominated theta pinch plasma,” Phys. Fluids 20, 1556 (1977).10.1063/1.862056
    [31]
    T. M. York, B. A. Jacoby, and P. Mikellides, “Plasma flow processes within magnetic nozzle configurations,” J. Propul. Power 8, 1023–1030 (1992).10.2514/3.23588
    [32]
    J. E. Heidrich, T. M. York, J. W. Robinson, and E. H. Klevans, “Transient loss from a theta pinch with an initial trapped reverse magnetic field,” Plasma Phys. 24, 1243 (1982).10.1088/0032-1028/24/10/003
    [33]
    C. Grabowski, J. H. Degnan, D. J. Amdahl et al., “Addressing short trapped-flux lifetime in high-density field-reversed configuration plasmas in FRCHX,” IEEE Trans. Plasma Sci. 42, 1179–1188 (2014).10.1109/tps.2014.2305402
    [34]
    M. J. E. Manuel, B. Khiar, G. Rigon et al., “On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas,” Matter Radiat. Extremes 6, 026904 (2021).10.1063/5.0025374
    [35]
    [36]
    E. K. Stover, E. H. Klevans, and T. M. York, “Computer modeling of linear theta pinch machines,” Phys. Fluids 21, 2090 (1978).10.1063/1.862116
    [37]
    S. Lee, S. H. Saw, P. C. K. Lee et al., “A model code for the radiative theta pinch,” Phys. Plasmas 21, 072501 (2014).10.1063/1.4886359
    [38]
    S. Chaisombat, D. Ngamrungroj, P. Tangjitsomboon, and R. Mongkolnavin, “Determination of plasma electron temperature in a pulsed inductively coupled plasma (PICP) device,” Procedia Eng. 32, 929–935 (2012).10.1016/j.proeng.2012.02.034
    [39]
    J. B. Taylor and J. A. Wesson, “End losses from a theta pinch,” Nucl. Fusion 5, 159 (1965).10.1088/0029-5515/5/2/008
    [40]
    J. P. Freidberg and H. Weitzner, “Endloss from a linear theta pinch,” Nucl. Fusion 15, 217 (1975).10.1088/0029-5515/15/2/006
    [41]
    G. Loisch, G. Xu, A. Blazevic, B. Cihodariu-Ionita, and J. Jacoby, “Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping,” Phys. Plasmas 22, 053502 (2015).10.1063/1.4919851
    [42]
    C. Teske, Y. Liu, S. Blaes, and J. Jacoby, “Electron density and plasma dynamics of a spherical theta pinch,” Phys. Plasmas 19, 033505 (2012).10.1063/1.3690107
    [43]
    W. W. Yarborough and J. P. Barach, “Current sheet observations in a small theta pinch,” Phys. Fluids 18, 105 (1975).10.1063/1.860981
    [44]
    K. Cistakov, P. Christ, L. Manganelli , “Study on a dense theta pinch plasma for ion beam stripping application for FAIR,” Recent Contrib. Phys 75, 14–21 (2020).10.26577/rcph.2020.v75.i4.02.
    [45]
    M. Sato, “Particle acceleration and breakdown conditions in an alternating magnetic field,” Nuovo Cimento 23, 22–46 (1962).10.1007/bf02733540
    [46]
    H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997).
    [47]
    H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, Berlin, Heidelberg, 2009).
    [48]
    J. M. Garland, G. Tauscher, S. Bohlen et al., “Combining laser interferometry and plasma spectroscopy for spatially resolved high-sensitivity plasma density measurements in discharge capillaries,” Rev. Sci. Instrum. 92, 013505 (2021).10.1063/5.0021117
    [49]
    M. A. Gigosos, M. Á. González, and V. Cardeñoso, “Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics,” Spectrochim. Acta, Part B 58, 1489–1504 (2003).10.1016/s0584-8547(03)00097-1
    [50]
    N. Konjević, M. Ivković, and N. Sakan, “Hydrogen Balmer lines for low electron number density plasma diagnostics,” Spectrochim. Acta, Part B 76, 16–26 (2012).10.1016/j.sab.2012.06.026
    [51]
    C. G. Parigger, K. A. Drake, C. M. Helstern, and G. Gautam, “Laboratory hydrogen-beta emission spectroscopy for analysis of astrophysical white dwarf spectra,” Atoms 6, 36 (2018).10.3390/atoms6030036
    [52]
    P. Christ, K. Cistakov, M. Iberler et al., “Measurement of the free electron line density in a spherical theta-pinch plasma target by single wavelength interferometry,” J. Phys. D: Appl. Phys. 54, 285203 (2021).10.1088/1361-6463/abf956
    [53]
    H. R. Griem, Plasma Spectroscopy (McGraw-Hill, NY, USA, 1964).
    [54]
    C. G. Parigger, C. M. Helstern, K. A. Drake, and G. Gautam, “Balmer-series hydrogen-beta line dip-shifts for electron density measurements,” Int. Rev. At. Mol. Phys 8(2), 73–79 (2017).
    [55]
    G. H. Cavalcanti and E. E. Farias, “Analysis of the energetic parameters of a theta pinch,” Rev. Sci. Instrum. 80, 125109 (2009).10.1063/1.3272785
    [56]
    C. Teske, J. Jacoby, F. Senzel, and W. Schweizer, “Energy transfer efficiency of a spherical theta pinch,” Phys. Plasmas 17, 043501 (2010).10.1063/1.3368795
    [57]
    F. A. Ebrahim, W. H. Gaber, and M. E. Abdel-kader, “Estimation of the current sheath dynamics and magnetic field for theta pinch by snow plow model simulation,” J. Fusion Energy 38, 539–547 (2019).10.1007/s10894-019-00222-8
    [58]
    L. H. Lim, Y. S. Ling, S. H. Saw et al., “Amending the reflected shock phase of the Lee code,” AIP Conf. Proc 1824, 030010 (2017).10.1063/1.4978828
    [59]
    T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (Cambridge University Press, New York, 2004).
    [60]
    Y. Mizuguchi, J.-I. Sakai, H. R. Yousefi, T. Haruki, and K. Masugata, “Simulation of high-energy proton production by fast magnetosonic shock waves in pinched plasma discharges,” Phys. Plasmas 14, 032704 (2007).10.1063/1.2716673
    [61]
    S. H. Gold and A. W. DeSilva, “Observation of an lon-beam-driven instability in a magnetized plasma,” Phys. Rev. Lett. 42, 1750–1753 (1979).10.1103/physrevlett.42.1750
    [62]
    K. Papadopoulos, “A review of anomalous resistivity for the ionosphere,” Rev. Geophys. 15, 113–127, (1977).10.1029/rg015i001p00113
    [63]
    D. B. Graham, Y. V. Khotyaintsev, M. Andre et al., “Direct observations of anomalous resistivity and diffusion in collisionless plasma,” Nat. Commun. 13, 2954 (2022).10.1038/s41467-022-30561-8
    [64]
    R. C. Davidson and N. T. Gladd, “Anomalous transport properties associated with the lower-hybrid-drift instability,” Phys. Fluids 18, 1327 (1975).10.1063/1.861021
    [65]
    K. Tummel, C. L. Ellison, W. A. Farmer et al., “Kinetic simulations of anomalous resistivity in high-temperature current carrying plasmas,” Phys. Plasmas 27, 092306 (2020).10.1063/5.0004508
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (63) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return