Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Bukharskii N., Korneev Ph.. Intense widely controlled terahertz radiation from laser-driven wires[J]. Matter and Radiation at Extremes, 2023, 8(4): 044401. doi: 10.1063/5.0142083
Citation: Bukharskii N., Korneev Ph.. Intense widely controlled terahertz radiation from laser-driven wires[J]. Matter and Radiation at Extremes, 2023, 8(4): 044401. doi: 10.1063/5.0142083

Intense widely controlled terahertz radiation from laser-driven wires

doi: 10.1063/5.0142083
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: n.bukharskii@gmail.com. Also at: P. N. Lebedev Physical Institute of RAS, 53 Leninskii Prospekt, 119991 Moscow, Russian Federation.
  • Received Date: 2023-01-11
  • Accepted Date: 2023-04-22
  • Available Online: 2023-07-01
  • Publish Date: 2023-07-01
  • Irradiation of a thin metallic wire with an intense femtosecond laser pulse creates a strong discharge wave that travels as a narrow pulse along the wire surface. This traveling discharge efficiently emits secondary radiation with spectral characteristics that are mostly defined by the wire geometry. Several examples of designs are considered here in the context of generation of intense terahertz radiation with controllable characteristics for various scientific and technological applications. The proposed setup may be easily realized, and it has the merits of robustness, versatility, and high conversion efficiency (reaching several percent) of laser energy to terahertz radiation.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    N. Bukharskii: Conceptualization (equal); Data curation (equal); Investigation (equal); Methodology (equal); Project administration (equal); Visualization (lead); Writing – original draft (equal). Ph. Korneev: Conceptualization (equal); Data curation (supporting); Formal analysis (lead); Funding acquisition (lead); Investigation (equal); Methodology (equal); Project administration (equal); Supervision (lead); Writing – original draft (equal); Writing – review & editing (lead).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).10.1038/nphoton.2007.3
    [2]
    S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).10.1088/1361-6463/50/4/043001
    [3]
    D. M. Mittleman, “Perspective: Terahertz science and technology,” J. Appl. Phys. 122, 230901 (2017).10.1063/1.5007683
    [4]
    T. Amini, F. Jahangiri, Z. Ameri, and M. A. Hemmatian, “A review of feasible applications of THz waves in medical diagnostics and treatments,” J. Lasers Med. Sci. 12, e92 (2021).10.34172/jlms.2021.92
    [5]
    A. I. Nikitkina, P. Y. Bikmulina, E. R. Gafarova, N. V. Kosheleva, Y. M. Efremov, E. A. Bezrukov, D. V. Butnaru, I. N. Dolganova, N. V. Chernomyrdin, O. P. Cherkasova, A. A. Gavdush, and P. S. Timashev, “Terahertz radiation and the skin: A review,” J. Biomed. Opt. 26, 043005 (2021).10.1117/1.JBO.26.4.043005
    [6]
    S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).10.1063/1.2194229
    [7]
    C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).10.3978/j.issn.2223-4292.2012.01.04
    [8]
    Terahertz Biomedical Science and Technology, 0th ed., edited by J.-H. Son (CRC Press, 2014).
    [9]
    Y. Peng, C. Shi, X. Wu, Y. Zhu, and S. Zhuang, “Terahertz imaging and spectroscopy in cancer diagnostics: A technical review,” BME Front. 2020, 2547609.10.34133/2020/2547609
    [10]
    Z. Vafapour, A. Keshavarz, and H. Ghahraloud, “The potential of terahertz sensing for cancer diagnosis,” Heliyon 6, e05623 (2020).10.1016/j.heliyon.2020.e05623
    [11]
    H. Lindley-Hatcher, R. I. Stantchev, X. Chen, A. I. Hernandez-Serrano, J. Hardwicke, and E. Pickwell-MacPherson, “Real time THz imaging—Opportunities and challenges for skin cancer detection,” Appl. Phys. Lett. 118, 230501 (2021).10.1063/5.0055259
    [12]
    H. Cheon, H.-j. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, “Terahertz molecular resonance of cancer DNA,” Sci. Rep. 6, 37103 (2016).10.1038/srep37103
    [13]
    H. Cheon, H.-J. Yang, M. Choi, and J.-H. Son, “Effective demethylation of melanoma cells using terahertz radiation,” Biomed. Opt. Express 10, 4931 (2019).10.1364/boe.10.004931
    [14]
    J.-H. Son, S. J. Oh, and H. Cheon, “Potential clinical applications of terahertz radiation,” J. Appl. Phys. 125, 190901 (2019).10.1063/1.5080205
    [15]
    J.-H. Son and H. Cheon, “Toward cancer treatment using terahertz radiation: Demethylation of cancer cells,” Proc. SPIE 11390, 1139002 (2020).10.1117/12.2557655
    [16]
    K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).10.1364/oe.11.002549
    [17]
    A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320/spl times/240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18, 1415–1417 (2006).10.1109/lpt.2006.877220
    [18]
    D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).10.1109/2944.571768
    [19]
    H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5, 203–208 (2005).10.1109/jsen.2004.841341
    [20]
    P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, “Matter manipulation with extreme terahertz light: Progress in the enabling THz technology,” Phys. Rep. 836–837, 1–74 (2019).10.1016/j.physrep.2019.09.002
    [21]
    J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).10.1063/1.3386413
    [22]
    T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millimeter, Terahertz Waves 32, 143–171 (2011).10.1007/s10762-010-9758-1
    [23]
    Y. Zhang, K. Li, and H. Zhao, “Intense terahertz radiation: Generation and application,” Front. Optoelectron. 14, 4–36 (2021).10.1007/s12200-020-1052-9
    [24]
    G.-Q. Liao and Y.-T. Li, “Review of intense terahertz radiation from relativistic laser-produced plasmas,” IEEE Trans. Plasma Sci. 47, 3002–3008 (2019).10.1109/tps.2019.2915624
    [25]
    S. Tokita, S. Sakabe, T. Nagashima, M. Hashida, and S. Inoue, “Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses,” Sci. Rep. 5, 8268 (2015).10.1038/srep08268
    [26]
    Y. Tian, J. Liu, Y. Bai, S. Zhou, H. Sun, W. Liu, J. Zhao, R. Li, and Z. Xu, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation,” Nat. Photonics 11, 242–246 (2017).10.1038/nphoton.2017.16
    [27]
    K. Nakajima, “Novel efficient THz undulator using a laser-driven wire,” Light: Sci. Appl. 6, e17063 (2017).10.1038/lsa.2017.63
    [28]
    K. Teramoto, S. Tokita, T. Terao, S. Inoue, R. Yasuhara, T. Nagashima, S. Kojima, J. Kawanaka, K. Mori, M. Hashida, and S. Sakabe, “Half-cycle terahertz surface waves with MV/cm field strengths generated on metal wires,” Appl. Phys. Lett. 113, 051101 (2018).10.1063/1.5031873
    [29]
    Y. Zeng, C. Zhou, L. Song, X. Lu, Z. Li, Y. Ding, Y. Bai, Y. Xu, Y. Leng, Y. Tian, J. Liu, R. Li, and Z. Xu, “Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets,” Opt. Express 28, 15258–15267 (2020).10.1364/oe.390764
    [30]
    D. Zhang, Y. Zeng, Y. Bai, Z. Li, Y. Tian, and R. Li, “Coherent surface plasmon polariton amplification via free-electron pumping,” Nature 611, 55–60 (2022).10.1038/s41586-022-05239-2
    [31]
    D. Zhang, Y. Bai, Y. Zeng, Y. Ding, Z. Li, C. Zhou, Y. Leng, L. Song, Y. Tian, and R. Li, “Towards high-repetition-rate intense terahertz source with metal wire-based plasma,” IEEE Photonics J. 14, 5910605 (2022).10.1109/jphot.2022.3140872
    [32]
    H. B. Zhuo, S. J. Zhang, X. H. Li, H. Y. Zhou, X. Z. Li, D. B. Zou, M. Y. Yu, H. C. Wu, Z. M. Sheng, and C. T. Zhou, “Terahertz generation from laser-driven ultrafast current propagation along a wire target,” Phys. Rev. E 95, 013201 (2017).10.1103/PhysRevE.95.013201
    [33]
    Z.-c. Li and J. Zheng, “Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse,” Phys. Plasmas 14, 054505 (2007).10.1063/1.2734945
    [34]
    K. Quinn, P. A. Wilson, C. A. Cecchetti, B. Ramakrishna, L. Romagnani, G. Sarri, L. Lancia, J. Fuchs, A. Pipahl, T. Toncian, O. Willi, R. J. Clarke, D. Neely, M. Notley, P. Gallegos, D. C. Carroll, M. N. Quinn, X. H. Yuan, P. McKenna, T. V. Liseykina, A. Macchi, and M. Borghesi, “Laser-driven ultrafast field propagation on solid surfaces,” Phys. Rev. Lett. 102, 194801 (2009).10.1103/physrevlett.102.194801
    [35]
    N. Bukharskii, I. Kochetkov, and P. Korneev, “Terahertz annular antenna driven with a short intense laser pulse,” Appl. Phys. Lett. 120, 014102 (2022).10.1063/5.0076700
    [36]
    M. Ehret, M. Bailly-Grandvaux, P. Korneev, J. I. Apiñaniz, C. Brabetz, A. Morace, P. Bradford, E. d’Humières, G. Schaumann, V. Bagnoud, S. Malko, K. Matveevskii, M. Roth, L. Volpe, N. C. Woolsey, and J. J. Santos, “Guided electromagnetic discharge pulses driven by short intense laser pulses: Characterization and modeling,” Phys. Plasmas 30, 013105 (2023).10.1063/5.0124011
    [37]
    P. Korneev, E. d’Humières, and V. Tikhonchuk, “Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target,” Phys. Rev. E 91, 043107 (2015); arXiv:1410.0053.10.1103/physreve.91.043107
    [38]
    I. V. Kochetkov, N. D. Bukharskii, M. Ehret, Y. Abe, K. F. F. Law, V. Ospina-Bohorquez, J. J. Santos, S. Fujioka, G. Schaumann, B. Zielbauer, A. Kuznetsov, and P. Korneev, “Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses,” Sci. Rep. 12, 13734 (2022).10.1038/s41598-022-17202-2
    [39]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, and M. Grech, “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
    [40]
    A. V. Brantov, A. S. Kuratov, Y. M. Aliev, and V. Y. Bychenkov, “Ultrafast target charging due to polarization triggered by laser-accelerated electrons,” Phys. Rev. E 102, 021202 (2020); arXiv:2002.07436.10.1103/PhysRevE.102.021202
    [41]
    G.-Q. Liao, H. Liu, G. G. Scott, Y.-H. Zhang, B.-J. Zhu, Z. Zhang, Y.-T. Li, C. Armstrong, E. Zemaityte, P. Bradford, D. R. Rusby, D. Neely, P. G. Huggard, P. McKenna, C. M. Brenner, N. C. Woolsey, W.-M. Wang, Z.-M. Sheng, and J. Zhang, “Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions,” Phys. Rev. X 10, 031062 (2020).10.1103/physrevx.10.031062
    [42]
    F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu, C. Radier, O. Casagrande, S. Laux, S. Ricaud, G. Rey et al., “High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability,” High Power Laser Sci. Eng. 8, e43 (2020).10.1017/hpl.2020.41
    [43]
    S. Tokita, K. Otani, T. Nishoji, S. Inoue, M. Hashida, and S. Sakabe, “Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses,” Phys. Rev. Lett. 106, 255001 (2011).10.1103/physrevlett.106.255001
    [44]
    H. Nakajima, S. Tokita, S. Inoue, M. Hashida, and S. Sakabe, “Divergence-free transport of laser-produced fast electrons along a meter-long wire target,” Phys. Rev. Lett. 110, 155001 (2013).10.1103/physrevlett.110.155001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (38) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return